ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 021 Câu 1 Hàm số nào dưới đây có bảng biến thiên như hình sau? A B C[.]
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 021.
Câu 1
Hàm số nào dưới đây có bảng biến thiên như hình sau?
A y= x+3
Đáp án đúng: D
Giải thích chi tiết: Hàm số nào dưới đây có bảng biến thiên như hình sau?
A y= x−3 x−1
B y= x+2 x−1.
C y= x+3
x+1.
D y= 2 x−3 x−1 .
Lời giải
Ta có TCĐ x=1 và TCN y=1 và y '= 2(x−1)2>0
Câu 2 Trong mặt phẳng tọa độ cho vectơ Phép tịnh tiến theo vectơ biến đường tròn
thành đường tròn Mệnh đề nào sau đây đúng?
Trang 2C D
Đáp án đúng: B
Câu 3
Tìm tập xác định của hàm số
Đáp án đúng: C
Câu 4 Tập xác định của hàm số y=x−2 là
Đáp án đúng: C
Giải thích chi tiết:
Lời giải
Tập xác định của hàm số y=x−2 là: D=R¿0 }¿
Câu 5 Tìm tập xác định của hàm số
Đáp án đúng: B
đồ thị hàm số có hai điểm cực trị sao cho thẳng hàng Tổng các phần tử của bằng
Đáp án đúng: A
tham số để đồ thị hàm số có hai điểm cực trị sao cho thẳng hàng Tổng các phần tử của bằng
A B C D .
Lời giải
Đồ thị có hai điểm cực trị có hai nghiệm phân biệt
có hai nghiệm phân biệt
Suy ra phương trình đường thẳng đi qua hai điểm cực trị là
Trang 3Câu 7 Tìm giá trị lớn nhất của hàm số trên đoạn
Đáp án đúng: A
Câu 8
Nghiệm của phương trình là
Đáp án đúng: A
Câu 9 Số nghiệm thực của phương trình là
Đáp án đúng: B
Câu 10
Cho hàm số Có bao nhiêu số nguyên để hàm số có ba điểm cực trị trong đó
có đúng hai điểm cực tiểu và một điểm cực đại ?
Đáp án đúng: B
cắt lần lượt tại Biết phương trình tiếp tuyến của tại và của tại lần lượt là và , và phương trình tiếp tuyến của tại có dạng Tìm
Đáp án đúng: D
Câu 12 Cho hàm số có giá trị cực đại và giá trị cực tiểu Hỏi có bao nhiêu giá trị nguyên của tham số để phương trình có 4 nghiệm phân biệt
Đáp án đúng: C
Giải thích chi tiết: Hàm số là hàm số trùng phương có giá trị cực đại và giá trị cực tiểu , suy ra bảng biến thiên của như sau
Trang 4Đặt phương trình trở thành Phương trình có 4 nghiệm phân biệt khi và chỉ khi phương trình có 2 nghiệm
Dựa vào bảng biến thiên của hàm số trên nửa khoảng , phương trình có 2 nghiệm
Vậy có 1 số nguyên thỏa mãn yêu cầu bài toán
Câu 13 Cho hàm số Với tất cả các giá trị nào của m thì đồ thị hàm số cắt đường thẳng
tai bốn điểm phân biệt?
Đáp án đúng: B
Câu 14 Gọi là tổng các giá trị thực của tham số để phương trình có các nghiệm phức thỏa mãn Tính
Đáp án đúng: B
Giải thích chi tiết: Gọi là tổng các giá trị thực của tham số để phương trình có các nghiệm phức thỏa mãn Tính
A B C D
Câu 15 Cho số phức thỏa mãn Trong mặt phẳng phức, quỹ tích điểm biểu diễn các số phức
Đáp án đúng: A
Giải thích chi tiết: Cho số phức thỏa mãn Trong mặt phẳng phức, quỹ tích điểm biểu diễn các số phức
Lời giải
Vậy quỹ tích điểm biểu diễn các số phức là đường thẳng
Trang 5A B C D .
Đáp án đúng: C
Câu 17 Bất phương trình có nghiệm là:
Đáp án đúng: D
Câu 18 Tập xác định của hàm số là
Đáp án đúng: B
Vậy tập xác định của hàm số là
Câu 19 Cho số thực dương Viết biểu thức dưới dạng lũy thừa cơ số ta được kết quả
Đáp án đúng: A
Câu 20
Cho hàm số xác định, liên tục trên và có bảng biến thiên như hình dưới đây Khẳng định
nào sau đây là sai?
A được gọi là điểm cực đại của hàm số
B Hàm số có ba điểm cực trị.
C được gọi là giá trị cực tiểu của hàm số
D được gọi là điểm cực tiểu của hàm số
Đáp án đúng: A
Câu 21 Cho hàm số liên tục và không âm trên đoạn Diện tích hình thang cong giới hạn bởi đồ thị hàm số , trục và hai đường thẳng được tính theo công thức nào dưới đây?
Trang 6C D
Đáp án đúng: A
Giải thích chi tiết: Cho hàm số liên tục và không âm trên đoạn Diện tích hình thang cong giới hạn bởi đồ thị hàm số , trục và hai đường thẳng được tính theo công thức nào dưới đây?
Lời giải
Diện tích hình thang cong cần tìm là
Câu 22 Cho số thực dương Biểu thức được viết dưới dạng lũy thừa với số mũ
hữu tỉ có dạng , với là phân số tối giản Khi đó, biểu thức liên hệ giữa và là:
Đáp án đúng: D
Giải thích chi tiết: Cho số thực dương Biểu thức được viết dưới dạng lũy thừa
với số mũ hữu tỉ có dạng , với là phân số tối giản Khi đó, biểu thức liên hệ giữa và là:
Hướng dẫn giải
Cách 1:
Trang 7Nhẩm Ta nhập màn hình 1a2=(M+1)1a2
Câu 23 Diện tích S của hình phẳng giới hạn bởi các đường , , và bằng
Đáp án đúng: B
Câu 24 Gọi là hai nghiệm phức của phương trình Giá trị của bằng:
Đáp án đúng: D
Giải thích chi tiết:
Câu 25 Cho cấp số nhân có và Công bội của cấp số nhân bằng
Đáp án đúng: C
Giải thích chi tiết: Cho cấp số nhân có và Công bội của cấp số nhân bằng
A B C D .
Lời giải
Ta có công bội
Câu 26 Nghiệm của phương trình là
Đáp án đúng: D
Giải thích chi tiết:
Ta có:
Câu 27 Trong mặt phẳng cho điểm Phép tịnh tiến theo vectơ biến thành điểm có tọa
độ là:
Đáp án đúng: D
Câu 28
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức thỏa mãn đẳng thức
là một đường tròn Tính bán kính R của đường tròn đó.
Trang 8Đáp án đúng: C
Câu 29 Giả sử hàm số f xác định trên tập hợp Nếu tồn tại một điểm sao cho Khẳng định nào sau đây là khẳng định đúng?
A Số được gọi là giá trị lớn nhất của hàm số f trên tập xác định.
B Số được gọi là giá trị nhỏ nhất của hàm số f trên D tại
C Số được gọi là giá trị nhỏ nhất của hàm số f trên
D Số được gọi là giá trị lớn nhất của hàm số f trên
Đáp án đúng: D
Câu 30 Tìm giá trị nhỏ nhất của hàm số trên đoạn
Đáp án đúng: A
Giải thích chi tiết: [2D1-3.8-3] Tìm giá trị nhỏ nhất của hàm số trên đoạn
Lời giải
Đặt với
Câu 31 Trong , nghiệm của phương trình là:
Đáp án đúng: D
Giải thích chi tiết: Trong , nghiệm của phương trình là:
Hướng dẫn giải:
Giả sử là một nghiệm của phương trình
Trang 9Do đó phương trình có hai nghiệm là
Ta chọn đáp án A
Câu 32 Cho và Khi đó giá trị của là
Đáp án đúng: D
Giải thích chi tiết: Cho và Khi đó giá trị của là
A B C D
Lời giải
Câu 33 Tích các nghiệm của phương trình là
Đáp án đúng: C
Câu 34 Hàm số y=x3−3 x2+4 đồng biến trên:
C (− ∞;0) và (2;+∞). D (0 ;2).
Đáp án đúng: C
Câu 35
Cho hàm f ( x) liên tục trên và có bảng xét dấu f ′ ( x )như sau:
Số điểm cực tiểu của hàm số là
Đáp án đúng: C
Giải thích chi tiết: (Mã 102 - 2020 Lần 1) Cho hàm f ( x) liên tục trên và có bảng xét dấu f ′ ( x )như
sau:
Số điểm cực tiểu của hàm số là
A B C D
Lời giải
Ta thấy f ′ ( x ) đổi dấu 2 lần từ (− ) sang (+) khi qua các điểm nên hàm số có 2 điểm cực tiểu.