1. Trang chủ
  2. » Giáo án - Bài giảng

thể tích khối đa diện

34 49 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 5,13 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và cạnh bên SD hợp với đáy một góc60°.. Sở GD-ĐT Hải Dương – năm 2017 Cho tứ diện ABCD có ABC là tam giác vuông cân tạiC

Trang 1

Câu 1 (Đề Thi THPTQG năm 2017 Mã đề 110) Cho khối lăng trụ đứng ABC A B C. ′ ′ ′ có BB a′ = ,

đáy ABC là tam giác vuông cân tại B và AC a= 2 Tính thể tích V của khối lăng trụ đãcho

A

36

a

33

a

32

a

V = D V =a3

Câu 2 (Đề Thi THPTQG năm 2017 Mã đề 110) Cho khối chóp S ABCD có đáy ABCD là hình chữ

nhật, AB a= , AD a= 3, SA vuông góc với mặt phẳng đáy và mặt phẳng (SBC tạo với đáy)một góc 60° Tính thể tích V của khối chóp S ABCD

a

V =

Câu 3. Cho hình bát diện đều cạnh a Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó Mệnh đề

nào dưới đây đúng?

A S =4 3a2 B S = 3a2 C S =2 3a2 D S =8a2

Câu 4. Cho khối chóp tam giác đều S ABC. có cạnh đáy bằng a và cạnh bên bằng 2a Tính thể tích

V của khối chóp S ABC

a

398

a

38

a

334

Câu 7 (Đề Thi THPTQG năm 2017 Mã đề 103) Cho khối chóp S ABCD có đáy là hình vuông cạnh

a , SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng 2

2

a Tính thểtích V của khối chóp đã cho.

A

32

=a

3

39

=a

33

Trang 2

Câu 9 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 6 – năm 2017) Cho lăng trụ đứng ABC A B C. ′ ′ ′ có đáy

ABC là tam giác đều cạnh a , góc tạo bởi hai mặt phẳng (ABC , ) (A BC′ ) bằng 60° Tính thểtích khối lăng trụ ABC A B C ′ ′ ′

Câu 11 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 6 – năm 2017) Bên cạnh con đường trước

khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy Ngọn tháp hình tứ giácđều S ABCD cạnh bên SA=600 mét, ·ASB= °15 Do có sự cố đường dây điện

tại điểm Q (là trung điểm của SA ) bị hỏng, người ta tạo ra một con đường

từ A đến Q gồm bốn đoạn thẳng: AM , MN , NP , PQ (hình vẽ). Đểtiết kiệm kinh phí, kỹ sư đã nghiên cứu và có được chiều dài con

Câu 12 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 6 – năm 2017)

Cho hình chóp SABC , SA=4, SB=5, SC=6, ·ASB BSC=· = °45 , ·CSA= °60 Các điểm M ,

N , P thỏa mãn các đẳng thức: uuurAB=4uuuurAM, uuurBC=4uuurBN, CAuuur=4CPuuur Tính thể tích chóp S MNP

Câu 14 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 5 – năm 2017) Cho hình chóp S ABCD có SA vuông

góc với mặt phẳng ( ABCD , đáy ABCD là hình chữ nhật có ) AB=2a , AD a= Cạnh bên

SC tạo với mặt phẳng đáy một góc 60° Tính thể tích V khối chóp S ABD theo a

Trang 3

Câu 15 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 2 – năm 2017) Cho hình lăng trụ tam giác đều có tất cả

các cạnh đều bằng a Tính theo a thể tích của khối lăng trụ.

A

33

Câu 17 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 2 – năm 2017) Hình chóp S ABC có đáy là tam giác

ABC vuông cân tại , B 2;

.16

a

C

32.48

.48

a

Câu 18 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 2 – năm 2017) Cho biết thể tích của một khối hộp chữ

nhật là ,V đáy là hình vuông cạnh a Khi đó diện tích toàn phần của hình hộp bằng.

Câu 19. (Sở GD-ĐT Tp Hồ Chí Minh – cụm 2 – năm 2017)Tính theo a thể tích V của khối lập

phương ABCD A B C D ′ ′ ′ ′ biết AC′ =a

Câu 20 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 2 – năm 2017) Tính thể tích  V của khối chóp có đáy là

hình vuông cạnh 2a và chiều cao là 3a

a

3.4

a

V = C V =2 a3 D

3.2

a

V =

Câu 22 (Sở GD-ĐT Tp Hồ Chí Minh – Cụm 1 – năm 2017) Một khối gỗ có dạng là lăng trụ, biết

diện tích đáy và chiều cao lần lượt là 0, 25m và 1, 2 m Mỗi mét khối gỗ này trị giá 5 triệu2đồng Hỏi khối gỗ đó có giá bao nhiêu tiền?

A 750000 đồng B 500000 đồng C 1500000 đồng D 3000000 đồng

Câu 23 (Sở GD-ĐT Tp Hồ Chí Minh – Cụm 1 – năm 2017) Cho hình chóp S ABCD. có đáy ABCD

là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và cạnh bên SD hợp với đáy một góc60° Hỏi thể tích V của khối chóp S ABCD bằng bao nhiêu?

Trang 4

Câu 24 (Sở GD-ĐT Tp Hồ Chí Minh – Cụm 1 – năm 2017) Cho hình chóp tam giác S ABC. có

·ASB CSB=· = °60 , ·ASC= °90 , SA SB= =1, SC=3 Gọi M là điểm trên cạnh SC sao cho1

Câu 26 (THPT Chuyên Lê Hồng Phong – Tp Hồ Chí Minh – năm 2017) Cho hình chóp S ABC. có

đáy là tam giác ABC vuông tại C, AB a= 5, AC a= Cạnh bên SA=3a và vuông góc vớimặt phẳng (ABC Tính thể tích khối chóp ) S ABC

A

3 5.2

Câu 28 (THPT Chuyên Lê Hồng Phong – Tp Hồ Chí Minh – năm 2017) Cho tứ diện đều ABCD

cạnh a , tính khoảng cách giữa hai đường thẳng AB và CD

63

32

33

a .

Câu 30 (THPT Chuyên Lê Hồng Phong – Tp Hồ Chí Minh – năm 2017) Cho hình chóp S ABCD.

nội tiếp mặt cầu bán kính R Tìm giá trị lớn nhất của tổng:

Trang 5

Câu 33 (THPT Lê Lợi – Thanh Hóa – lần 3 – năm 2017) Một hình trụ có bán kính đáy là 4cm và có

thiết diện qua trục là một hình vuông Tính thể tích V của khối trụ đó.

Câu 35 (THPT Chuyên Biên Hòa – Hà Nam – lần 3 – năm 2017) Cho khối chóp lục giác đều có

cạnh đáy bằng 2a , góc giữa cạnh bên và mặt đáy bằng 30° Tính thể tích của khối chóp đó

A

323

a

32

a

Câu 36 (THPT Chuyên Biên Hòa – Hà Nam – lần 3 – năm 2017) Cho hình hộp ABCD A B C D. ′ ′ ′ ′,

gọi O là giao điểm của AC và BD Tính tỉ số thể tích của khối chóp O A B C′ ′ ′ và khối hộp

ABCD A B C D có đáy là hình vuông và thể tích bằng 2a Biết chiều cao của khối lăng trụ3

bằng 3a Tính độ dài cạnh đáy của hình lăng trụ ABCD A B C D ' ' ' '

Trang 6

A a3 119 B

3 1193

a

3

4 1193

a

D 4a3 119

Câu 40 (Sở GD-ĐT Phú Thọ - lần 2 – năm 2017) Cho hình chóp S ABCD có đáy ABCD là hình chữ

nhật, AB a= , AD a= 3, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với

đáy, khoảng cách giữa AB và SC bằng 3

2

a Tính thể tích V của khối chóp S ABCD

cm 3

V =

cm 3

cm 3

V =

Câu 42 (THPT TH Cao Nguyên – lần 2 – năm 2017) Cho hình chóp .S ABC có đáy là tam giác

vuông cân tại A, cạnh BC a= 2, cạnh bên SA vuông góc với đáy, mặt bên (SBC tạo với)đáy một góc bằng 45o Tính theo a thể tích khối chóp S ABC

Câu 43 (THPT TH Cao Nguyên – lần 2 – năm 2017) Cho hình chóp S ABCD có đáy là hình thang

vuông tại AB , AB BC a= = , AD=2a Hình chiếu của S lên mặt phẳng(ABCD trùng)với trung điểm cạnh AB Biết rằngSC a= 5 Tính theo a thể tích V của khối chóp S ABCD

Câu 45 (THPT Chuyên Lam Sơn – Thanh Hóa – lần 3 - năm 2017) Cho hình chóp S ABC có đáy

ABC là tam giác vuông tại B , AB a= , ·ACB= °30 Biết thể tích của khối chóp bằng

32

a

.Tính chiều cao h của hình chóp đã cho

Trang 7

Câu 46. (THPT Chuyên Lam Sơn – Thanh Hóa – lần 3 - năm 2017) Cho khối tứ diện đều ABCD có

cạnh bằng 3a , gọi G , 1 G , 2 G , 3 G là trọng tâm của 4 mặt của tứ diện ABCD Tính thể tích4

V của khối tứ diện G G G G 1 2 3 4

A

3 218

a

3

9 232

a

3 24

a

3 212

A V =a3 3 B

32

Câu 48 (THPT Chuyên ĐH Vinh – lần 4 – năm 2017) Cho hình chóp S ABC. có SA a= , tam giác

ABC đều, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳngđáy Thể tích khối chóp S ABC bằng

Câu 49 (THPT Chuyên ĐH Vinh – lần 4 – năm 2017) Cho hình chóp S ABCD có đáy ABCD là

hình vuông, cạnh bên SA a= 2 và SA vuông góc với mặt phẳng đáy, tam giác SBD là tamgiác đều Thể tích của khối chóp S ABCD bằng

Câu 50 (THPT Chuyên ĐH Vinh – lần 4 – năm 2017) Cho hình lăng trụ tam giác đều ABC A B C. ′ ′ ′

có tất cả các cạnh bằng a Gọi M N lần lượt là trung điểm của các cạnh AB và B C, ′ ′ Mặtphẳng (A MN′ ) cắt cạnh BC tại P Thể tích khối đa diện MBP A B N. ′ ′ bằng

A

33.32

7 3.96

7 3.68

7 3.32

a

Câu 51 (Sở GD-ĐT Hải Dương – năm 2017) Cho hình chóp S ABC. có đáy là tam giác vuông tại B ,

cạnh SA vuông góc với đáy, góc ·ACB= °60 , BC a= , SA a= 3 Gọi M là trung điểm của

SB Tính thể tích V của khối tứ diện MABC

A

32

a

33

a

36

a

34

a

V =

Câu 52 (Sở GD-ĐT Hải Dương – năm 2017) Cho hình chóp tứ giác đều S ABCD. có đáy hợp với mặt

bên một góc 45° Bán kính mặt cầu ngoại tiếp hình chóp S ABCD bằng 2 Tính thể tích

khối chóp S ABCD

Trang 8

Câu 53 (Sở GD-ĐT Hải Dương – năm 2017) Cho tứ diện ABCDABC là tam giác vuông cân tại

C và nằm trong mặt phẳng vuông góc với mặt phẳng (ABD , tam giác ABD là tam giác đều)

và có cạnh bằng 2a Tính thể tích của khối tứ diện ABCD

A Bán kính mặt cầu ngoại tiếp hình lập phương là a 2

B Bán kính mặt cầu ngoại tiếp hình lập phương là 3

D Bán kính mặt cầu ngoại tiếp hình lập phương là a 3

Câu 55. (Sở GD-ĐT Hải Dương – năm 2017) Cho lăng trụ tứ giác đều có chiều cao bằng a , thể tích

bằng 4a Tính độ dài cạnh đáy.3

Câu 56 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 7 – năm 2017) Hình chóp S ABCD. có đáy ABCD

hình thoi cạnh 1, ·BAD= °60 , (SCD và ) (SAD cùng vuông góc với mặt phẳng ) (ABCD , góc)giữa SC và mặt đáy ABCD bằng 45° Tính diện tích mặt cầu ngoại tiếp tứ diện SBCD

Câu 57 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 7 – năm 2017) Cho hình lăng trụ tứ giác đều

Câu 59 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 7 – năm 2017) Cho khối lập phương ABCD A B C D. ′ ′ ′ ′ có

cạnh là a Tính thể tích khối chóp tứ giác D ABC D′ ′

Trang 9

Câu 60 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 7 – năm 2017) Cho hình chóp S ABC có SA vuông góc

với mặt phẳng (ABC Tam giác ABC vuông tại C , ) AB a= 3, AC a= Tính thể tích khốichóp S ABC biết rằng SC a= 5

Câu 61 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 8- năm 2017) Khối chóp tam giác đều có thể tích V =2a3

, cạnh đáy bằng 2a 3 thì chiều cao khối chóp bằng

Câu 62 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 8- năm 2017) Nếu khối lăng trụ đứng có đáy là hình

vuông cạnh 2a và đường chéo mặt bên bằng 4a thì khối lăng trụ đó có thể tích bằng

A 4a 3 B 6 3a 3 C 8 3a 3 D 12a 3

Câu 63 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 8- năm 2017) Tổng diện tích các mặt của một hình lập

phương bằng 150 Thể tích của khối lập phương đó là

Câu 64 (Sở GD-ĐT Tp Hồ Chí Minh – cụm 8- năm 2017) Nếu một khối hộp chữ nhật có độ dài các

đường chéo của các mặt lần lượt là 5 , 10 , 13 thì thể tích khối hộp chữ nhật đó bằng

Câu 66 (Đề Minh Họa – lần 3 – BGD – năm 2017) Cho hình chóp S ABCD. có đáy là hình vuông

cạnh , a SA vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB một góc bằng ) 30° Tính thểtích V của khối chóp S ABCD

A

3618

a

333

a

Câu 67 (Đề Minh Họa – lần 3 – BGD – năm 2017) Cho hình chóp tứ giác đều S ABCD. có cạnh đáy

bằng 3 2 ,a cạnh bên bằng 5 a Tính bán kính R của mặt cầu ngoại tiếp hình chóp S ABCD

8

a

R= D R=2a

Câu 68. (Đề Minh Họa – lần 3 – BGD – năm 2017) Cho khối tứ diện có thể tích bằng V Gọi V′ là

thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho,tính tỉ số V

V

Trang 10

′ =

3

V V

′ =

8

V V

′ =

Câu 69 (Sở GD-ĐT Bình Dương – lần 1 – năm 2017) [2H1-1] Cho khối chóp S ABC có đáy ABC

là tam giác đều cạnh a Hai mặt bên SAB và SAC cùng vuông góc với đáy Tính thể tích khối

ABC A B C′ ′ ′ có đáy ABC là tam giác vuông cân tại B với BA BC a= = , biết A B′ hợp với

đáy ABC một góc 60° Tính thể tích khối lăng trụ

Câu 72 (Sở GD-ĐT Bình Dương – lần 1 – năm 2017) [2H1-3] Cần xây một hồ cá có dạng hình hộp

chữ nhật với đáy có các cạnh 40cm và 30cm Để trang trí người ta đặt vào đấy một quả cầu thủy tinh có bán kính 5cm Sau đó đổ đầy hồ 30 lít nước Hỏi chiều cao của hồ cá là bao nhiêu

cm ?(Lấy chính xác đến chữ số thập phân thứ 2).

A 25,66 B 24,55 C 24,56 D 25, 44

Câu 73 (Sở GD-ĐT Bình Phước – năm 2017) Cho khối chóp S ABC có đáy ABC là tam giác đều

cạnh a , SA vuông góc với mặt phẳng đáy và SA=2a Tính thể tích khối chóp S ABC

A

3

3.6

3.2

3.3

3.12

a

B

3.3

a

C

3.6

a

D

3.12

a

Câu 75 (Sở GD-ĐT Bình Phước – năm 2017) Cho khối lăng trụ tam giác đều ABC A B C. ′ ′ ′ có cạnh

đáy bằng 2, diện tích tam giác A BC′ bằng 3 Tính thể tích của khối lăng trụ

A 2 5

Trang 11

Câu 76. (Sở GD-ĐT Phú Thọ - năm 2017) Một khối lăng trụ có chiều cao bằng 2a , diện tích đáy bằng

Câu 77 (Sở GD-ĐT Phú Thọ - năm 2017) Cho khối lăng trụ ABC A B C. ′ ′ ′ có thể tích bằng V Gọi I ,

K lần lượt là trung điểm của AA′ , BB′ Tính thể tích khối đa diện ABCIKC′ theo V ?

33

33

10 a

Câu 79 (Sở GD-ĐT Phú Thọ - năm 2017) Cho hình hộp chữ nhật ABCD A B C D. ′ ′ ′ ′ có thể tích bằng

48 Tính thể tích phần chung của hai khối chóp A B CD ′ ′ và A BC D′ ′

Câu 80 (THPT Thanh Thủy – Phú Thọ - năm 2017) Cho hình chóp S ABCD. có đáy là hình chữ

nhật, AB a= , BC=2a, SAvuông góc với mặt phẳng đáy ( ABCD Tính thể tích của khối)

chóp S.ABCD biết SB tạo với mặt phẳng đáy ( ABCD một góc ) 60°

Câu 81 (THPT Thanh Thủy – Phú Thọ - năm 2017) Cho lăng trụ tam giác ABC A B C. ′ ′ ′ có đáy là

tam giác vuông cân, cạnh huyền AC=2a Hình chiếu của A lên mặt phẳng (A B C′ ′ ′) là trung

điểm I của A B′ ′, góc giữa cạnh bên và mặt đáy bằng 60° Thể tích khối lăng trụ ABC A B C ′ ′ ′là

A

3 6.6

a

B

33.4

a

3 6.2

a

Câu 82 (THPT Thanh Thủy – Phú Thọ - năm 2017) Cho hình chóp S ABCD có đáy ABCD là hình

chữ nhật, SA⊥(ABCD), AC=2AB=4a Tính thể tích khối chóp S ABC biết rằng góc giữa

Trang 12

A 4 3.

9

a

B 2 3 3.3

a

C 4 3 3.3

a

D 4 3 6.9

a

Câu 83 (THPT Nguyễn Huệ - Huế - lần 1 – năm 2017) Cho hình chóp S ABC có chiều cao bằng a ,

AB a= , BC a= 3, ·ABC= °60 Tính thể tích V của khối chóp.

a

V = .

Câu 84 (THPT Nguyễn Huệ - Huế - lần 1 – năm 2017) Cho hình lăng trụ ABC.A B C′ ′ ′ có thể tích

bằng 30 Gọi I , J , K lần lượt là trung điểm của AA′, BB′,CC′ Tính thể tích V của tứ diện

Câu 85 (THPT Nguyễn Huệ - Huế - lần 1 – năm 2017) Cho hình chóp S ABC có đáy là tam giác đều

cạnh 2a , D là trung điểm BC Biết SAD là tam giác đều và mặt phẳng (SAD vuông góc với)mặt phẳng ( ABC Tính khoảng cách từ C đến mặt phẳng ) (SAB)

Câu 86 (THPT Kim Liên – Hà Nội – lần 2 – năm 2017) Cho hình chóp S ABC có đáy là tam giác

ABC vuông cân cạnh huyền 4a và thể tích là 8a Tính độ dài đường cao SH của hình chóp3

đã cho

Câu 87 (THPT Kim Liên – Hà Nội – lần 2 – năm 2017) Cho hình hộp ABCD A B C D có thể tích. ′ ′ ′ ′

bằng 32 và I là tâm của hình hộp đó Tính thể tích V của khối chóp I ABC

Câu 88 (THPT Kim Liên – Hà Nội – lần 2 – năm 2017) Cho hình lăng trụ tam giác ABC A B C có. ′ ′ ′

đáy là tam giác đều cạnh 3a Biết AB tạo với mặt phẳng ′ (ABC một góc 30°) và AB′ =6a Tính thể tích V của khối đa diện A B C AC ′ ′ ′

Câu 89 (THPT Đặng Thúc Hứa – Nghệ An – năm 2017) Cho hình chóp S ABCD có đáy ABCD là

hình vuông cạnh a Cạnh bên SA vuông góc với đáy và có độ dài bằng a Tính thể tích khối

tứ diện S BCD

A

36

a

34

a

33

a

32

a

Trang 13

Câu 90. (THPT Đặng Thúc Hứa – Nghệ An – năm 2017) Cho tứ diện ABCD Gọi ' B và ' C lần lượt

là trung điểm của AB và AC Tính tỉ số thể tích của khối tứ diện AB C D và khối tứ diện' '

a Tính khoảng cách d giữa hai đường thẳng AB và A C

Câu 92 (THPT Chuyên Thái Nguyên – lần 2 – năm 2017) Khối lăng trụ ABC A B C. ′ ′ ′ có đáy là một

tam giác đều cạnh ,a góc giữa cạnh bên và mặt phẳng đáy bằng 30 ° Hình chiếu của đỉnh A′

trên mặt phẳng đáy (ABC trùng với trung điểm của cạnh ) BC Tính thể tích của khối lăng trụ

đã cho

A

3 3.3

a

B

3 3.4

a

C

3 3.12

a

D

3 3.8

a

Câu 93 (THPT Chuyên Thái Nguyên – lần 2 – năm 2017) Cho hình chóp S ABCD có đáy ABCD là

hình vuông cạnh ,a SA và vuông góc với mặt phẳng đáy Tính khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC)

Câu 94 (THPT Chuyên Thái Nguyên – lần 2 – năm 2017) Một khối chóp tam giác đều có cạnh đáy

bằng a và các mặt bên đều tạo với mặt phẳng đáy một góc 60 ° Tính thể tích của khối chópđó

A

33.8

3.4

3.24

2.6

a

Câu 95 (THPT Chuyên Nguyễn Bĩnh Khiêm – Quãng Ngãi – lần 1 - năm 2017) Cho hình chóp

S ABCD có đáy ABCD là hình thoi cạnh x , · BAD= °60 , gọi I = AC BD∩ Hình chiếu vuông

góc của S lên mặt phẳng ( ABCD là ) H sao cho H là trung điểm của BI Góc giữa SC và

mp( ABCD bằng ) 45° Khi đó thể tích khối S ABCD bằng

A. 3 39

12

.24

.36

.48

x

Câu 96 (THPT Chuyên Nguyễn Bĩnh Khiêm – Quãng Ngãi – lần 1 - năm 2017) Một đứa trẻ dán 42

hình lập phương cạnh 1cm lại với nhau, tạo thành một khối hộp có mặt hình chữ nhật Nếu chu

vi đáy là 18cm thì chiều cao của khối hộp là:

Trang 14

Câu 97 (THPT Chuyên Nguyễn Bĩnh Khiêm – Quãng Ngãi – lần 1 - năm 2017) Cho hình chóp tứ

giác đều có cạnh đáy bằng x Diện tích xung quanh gấp đôi diện tích đáy Khi đó thể tích của

khối chóp bằng:

A.

3

36

32

312

33

.7

a

Câu 100 (THPT TH Cao Nguyên – lần 1 – năm 2017) Cho hình hộp đứng ABCD A B C D. ′ ′ ′ ′ có đáy là

hình vuông, cạnh bên AA′ =3a và đường chéo AC′ =5a Thể tích V của khối hộp

Câu 101 (THPT TH Cao Nguyên – lần 1 – năm 2017) Cho hình chóp S ABC có đáy là tam giác đều

cạnh a , cạnh bên SA vuông góc với đáy và thể tích của khối chóp đó bằng

32

Câu 102 (THPT TH Cao Nguyên – lần 1 – năm 2017) Cho hình lăng trụ đứng ABC A B C. ′ ′ ′ có đáy là

tam giác vuông cân đỉnh A , mặt bên BCC B′ ′ là hình vuông, khoảng cách giữa AB và CC′ bằng a Tính thể tích V khối lăng trụ theo a

Câu 103 (THPT Chuyên Bến Tre – năm 2017) Cho hình chóp S ABCD, có đáy ABCD là hình thoi

tâm O và có thể tích bằng 8 Tính thể tích V của khối chóp S OCD

Câu 104 (THPT Chuyên Bến Tre – năm 2017) Cho hình chóp S ABCD có đáy ABCD là hình vuông

cạnh a Biết SA⊥(ABCD) và SC a= 3 Tính thể tích V khối chóp S ABCD

Trang 15

A

332

a

33

a

3

33

a

3 23

a Tính chiều cao h của hình chóp đã cho.

Câu 106 (THPT Chuyên Bến Tre – năm 2017) Cho khối chóp S ABC có góc · ASB BSC CSA= · = · = °60

SA=2, SB=3, CS =4 Tính thể tích khối chóp S ABC

Câu 107 (Sở GD-ĐT Hà Tĩnh – năm 2017) Cho hình chóp S ABCD có đáy ABCD là hình vuông, SA

vuông góc với đáy, mặt bên (SCD hợp với đáy một góc bằng 60°) , M là trung điểm của BC

Biết thể tích khối chóp .S ABCD bằng 3 3

3

a Khoảng cách từ M đến mặt phẳng (SCD)bằng:

Câu 108 (Sở GD-ĐT Hà Tĩnh – năm 2017) Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh

a , SA⊥(ABC), SA=2 3a Thể tích khối chóp S ABC bằng

Câu 109 (Sở GD-ĐT Hà Tĩnh – năm 2017) Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau,

đường cao của một mặt bên là a 3 Thể tích V của khối chóp đó là:

Câu 111 (Sở GD-ĐT Hà Tĩnh – năm 2017) Một người thợ cần thiết kế một bể cá hình hộp chữ nhật có

đáy nhưng không có nắp đậy, có chiều cao là 60 cm, thể tích 38400 cm0 3 Người thợ dùng loạikính để sử dụng làm mặt bên có giá thành 1 000 000. . đồng/m2 và loại kính để làm mặt đáy cógiá thành 1 200 000 . đồng/m2 Giả sử phần tiếp xúc giữa các mặt là không đáng kể Số tiền mua

kính ít nhất để hoàn thành bể cá là

Trang 16

Câu 112 (Chuyên KHTN – Hà Nội – lần 5 – năm 2017) Cho một khối lập phương biết rằng khi tăng

độ dài cạnh của khối lập phương thêm 2cm thì thể tích của nó tăng thêm 152cm Hỏi cạnh3của khối lập phương đã cho bằng:

a

34

a

Câu 115 (Chuyên ĐH Vinh – lần 3 – năm 2017) Cho hình chóp S ABCD có đáy ABCD là hình chữ

nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng

đáy Tính thể tích khối chóp S ABCD biết rằng mặt phẳng (SBC tạo với mặt phẳng đáy một)góc 30 °

A

33.2

a

D

3

4 3.3

a

Câu 116 (Chuyên ĐH Vinh – lần 3 – năm 2017) Cho hình chóp S ABC có SC=2aSC⊥(ABC)

Đáy ABC là tam giác vuông cân tại B và có AB a= 2 Mặt phẳng ( )α đi qua C và vuông góc với SA , ( )α cắt SA , SB lần lượt tại D , E Tính thể tích khối chóp S CDE

A

349

a

323

a

329

a

33

Câu 118 (Chuyên ĐHSPHN – lần 2 – năm 2017) Cho hình chóp S ABCD. có đáy là hình vuông cạnh

3 cm, các mặt bên (SAB) và (SAD) vuông góc với mặt phẳng đáy, góc giữa SC và mặt đáy là

60 ° Thể tích của khối chóp S ABCD. là

A 6 6 cm 3 B 9 6 cm 3 C 3

3 3 cm D 3 6 cm 3

Trang 17

Câu 119. (Chuyên ĐHSPHN – lần 2 – năm 2017) Thể tích tứ diện ABCD có các mặt ABC và BCD là

các tam giác đều cạnh a và 3

a

Câu 120 (Chuyên ĐHSPHN – lần 2 – năm 2017) Cho lăng trụ đứng ABC A B C. ′ ′ ′ có các cạnh bằng a

Thể tích khối tứ diện ABA C′ ′ là

Câu 121 (Chuyên Phan Bội Châu – Nghệ An – lần 3 – năm 2017) Cho khối chóp S ABC. có đáy là

tam giác vuông tại A , SB⊥(ABC), AB a= , ·ACB= °30 , góc giữa đường thẳng SC và mặtphẳng (ABC là ) 60° Tính thể tích V của khối chóp S ABC theo a

A V =3a3 B V =a3 C V =2a3 D

332

a

V =

Câu 122 (Chuyên Phan Bội Châu – Nghệ An – lần 3 – năm 2017) Cho khối chóp S ABCD có đáy là

hình chữ nhật, SA⊥( ABCD), AB=3a, AD=2a, SB=5 a Tính thể tích V của khối chóp

Câu 123 (Chuyên Phan Bội Châu – Nghệ An – lần 3 – năm 2017) Cho tứ diện ABCDAB , AC,

AD đôi một vuông góc với nhau, AB a= , AC b= , AD c= Tính thể tích V của khối tứ diện ABCD theo a , b , c

Câu 125 (Chuyên Phan Bội Châu – Nghệ An – lần 3 – năm 2017) Cho khối lăng trụ ABCD A B C D. ′ ′ ′ ′

có đáy ABCD là hình vuông Hình chiếu vuông góc của A′ trên mặt phẳng (ABCD là trung điểm)của AB góc giữa mặt phẳng , (A CD′ ) và mặt phẳng (ABCD là 60 ) ° Thể tích của khối chóp

Ngày đăng: 22/09/2018, 17:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w