Đáp án đúng: C Giải thích chi tiết: Ta có Nếu thì phương trình có hai nghiệm thực, khi đó thỏa mãn Nếu , thì phương trình có hai nghiệm thức khi đó là hai số phức liên hợp nên ta luôn
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 084.
Câu 1
Trên tập hợp các số phức, xét phương trình là tham số thực) có bao nhiêu giá trị nguyên của để phương trình đó có hai nghiệm phân biệt thỏa mãn ?
Đáp án đúng: C
Giải thích chi tiết: Ta có
Nếu thì phương trình có hai nghiệm thực, khi đó
(thỏa mãn) Nếu , thì phương trình có hai nghiệm thức khi đó là hai số phức liên hợp nên ta luôn có ,
Vậy có 4 giá trị nguyên của tham số thỏa mãn
Câu 2
Đáp án đúng: C
Câu 3
Đáp án đúng: B
Câu 4 Bác nông dân có m rào để ngăn đàn gà nuôi dạng hình chữ nhật Để diện tích nuôi gà là lớn nhất thì chiều dài hình chữ nhật là m và chiều rộng là m Khi đó có giá trị bằng
Đáp án đúng: C
Giải thích chi tiết: Cách 1
Trang 2Dấu xảy ra
Cách 2
Câu 5 Nguyên hàm của hàm số f(x)= 4
x2 là
A 4x +C. B −4
x +C. C 4 x3 +C. D 4 x1 +C.
Đáp án đúng: B
Câu 6 Tìm nguyên hàm của hàm số trên thoả mãn điều kiện
Đáp án đúng: B
Giải thích chi tiết:
Lời giải
Câu 7
Đường cong ở hình bên là đồ thị của hàm số nào sau đây
Đáp án đúng: D
Câu 8 Cho bất phương trình Có bao nhiêu số nguyên thoả mãn bất phương trình trên
Đáp án đúng: D
Trang 3Câu 9 Tập xác định của hàm số là
Đáp án đúng: C
Câu 10 Tính giá trị của biểu thức P=(7+4√3)2017
(4√3−7)2016
Đáp án đúng: C
Câu 11
Cho hàm số có đồ thị như hình vẽ
Số nghiệm thực của phương trình
Đáp án đúng: B
Câu 12 Gọi và là hai nghiệm phức của phương trình Khi đó bằng
Đáp án đúng: D
Giải thích chi tiết: Ta có
Không mất tính tổng quát giả sử và
Câu 13 Cho hai số thực dương và hai số thực tùy ý Khẳng định nào dưới đây đúng ?
Trang 4C D
Đáp án đúng: A
Câu 14
Đáp án đúng: C
Câu 15 Biểu thức viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Đáp án đúng: D
Câu 16
Đáp án đúng: A
Câu 17 Trong mặt phẳng tọa độ , gọi là phần mặt phẳng chứa các điểm biểu diễn các số phức thỏa
mãn và có phần thực và phần ảo đều thuộc đoạn Tính diện tích của
Đáp án đúng: D
Vì và có phần thực và phần ảo đều thuộc đoạn nên
Trang 5
Suy ra là phần mặt phẳng giới hạn bởi hình vuông cạnh và hai hình tròn có tâm , bán kính
Gọi là diện tích của đường tròn
Vậy diện tích của hình là:
Câu 18 Cho hai số phức và Phần thực của số phức bằng
Đáp án đúng: B
Giải thích chi tiết: Cho hai số phức và Phần thực của số phức bằng
A B C D
Lời giải
Ta có
Vậy phần thực của số phức là 2
Câu 19
Hình bên là đồ thị của hàm số nào trong các hàm số sau đây?
Trang 6A B
Đáp án đúng: D
Giải thích chi tiết: Hình bên là đồ thị của hàm số nào trong các hàm số sau đây?
Lời giải
Hình bên là đồ thị của hàm mũ có cơ số nhỏ hơn
Câu 20
Tập xác định của hàm số là
Đáp án đúng: A
Câu 21 Cho hàm số Với giá trị nào của hàm số đạt cực đại tại ?
Đáp án đúng: B
Giải thích chi tiết: Cho hàm số Với giá trị nào của hàm số đạt cực đại tại
?
Câu 22
Đáp án đúng: A
Câu 23 Đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng
Đáp án đúng: C
Trang 7Giải thích chi tiết: Đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng
A B C D .
Lời giải
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là
Câu 24
Cho , , là ba số thực dương khác Đồ thị các hàm số , , được cho trong hình vẽ bên Mệnh đề nào sau đây đúng?
Đáp án đúng: D
Câu 25
Với a là số thực dương khác 1, khi đó bằng
Đáp án đúng: C
Câu 26
Hình vẽ bên là đồ thị của hàm số Biểu thức có thể nhận giá trị nào trong các giá trị sau?
Trang 8A B
Đáp án đúng: D
Câu 27 . Cho số phức thỏa mãn Giá trị lớn nhất của biểu thức
bằng
Đáp án đúng: B
Giải thích chi tiết: Cho số phức thỏa mãn Giá trị lớn nhất của biểu thức
bằng
Lời giải
Tác giả: Nguyễn Thị Bích Ngọc; Fb: Bich Ngoc
Trước hết ta chứng minh đẳng thức mô đun sau: Cho các số thực và các số phức ta có:
Chứng minh :
, suy ra ĐPCM
Ta có
Áp dụng bất đẳng thức Bunhiacopxki ta có
Trang 9
Đẳng thức xảy ra khi và chỉ khi
(Hệ này có nghiệm)
Câu 28 Số giao điểm của đồ thị hàm số với trục hoành bằng
Đáp án đúng: C
Giải thích chi tiết:
Lời giải
Câu 29 Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số có tập xác định là
?
Đáp án đúng: B
Câu 30
Cho hai hàm số và có đồ thị như hình vẽ Mệnh đề nào sau đây đúng?
Đáp án đúng: A
Giải thích chi tiết: Dựa vào tính đơn điệu của đồ thị hàm số.
Cách giải:
Đồ thị hàm số đồng biến trên
Đồ thị hàm số nghịch biến trên
Vậy
Câu 31 Điểm nào sau đây là thuộc đồ thị hàm số y = – x3 – 3x2 + 4?
Đáp án đúng: C
Trang 10Đáp án đúng: A
Giải thích chi tiết: Đồ thị dưới đây là của hàm số nào
.
Câu 33 Cho Giá trị của biểu thức bằng
Đáp án đúng: D
Giải thích chi tiết: Cho Giá trị của biểu thức bằng
A B C D .
Lời giải
Câu 34
Hàm số nào dưới đây có bảng biến thiên như sau
A y=−x4+4 x2+1 B y=x4−8 x2+1
Đáp án đúng: A
Trang 11Cho hàm số có đồ thị như hình vẽ Mệnh đề nào sau đây đúng?
Đáp án đúng: D
Giải thích chi tiết: [2D1-5.1-1] (học kì 1 thpt Cần Thơ 2020-2021) Cho hàm số có đồ thị như hình vẽ Mệnh đề nào sau đây đúng?
Lời giải
Nhìn vào hình dạng đồ thị ta thấy
Đồ thị hàm số có điểm cực trị nên và trái dấu Suy ra
Đồ thị cắt trục tại điểm có tung độ dương nên
Vậy chọn đáp án D.