Thể tích của khối chóp đã cho bằng Đáp án đúng: B Giải thích chi tiết: Câu 4.. Trong không gian , cho tam giác có , đường cao nằm trên đường thẳng dài cạnh bằng Đáp án đúng: C Giải thí
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN MÔN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 038.
Đáp án đúng: B
Câu 2 Cho số phức và biết chúng đồng thời thỏa mãn hai điều kiện: và Tìm giá trị lớn nhất của
Đáp án đúng: A
Giải thích chi tiết:
Vậy tập hợp điểm biểu diễn số phức thuộc đường tròn tâm bán kính
Trang 2Câu 3 Cho khối chóp có là: hình vuông cạnh , , Thể tích của khối chóp đã cho bằng
Đáp án đúng: B
Giải thích chi tiết:
Câu 4 Trong không gian , cho tam giác có , đường cao nằm trên đường thẳng
dài cạnh bằng
Đáp án đúng: C
Giải thích chi tiết:
lần lượt là hình chiếu của trên
Trang 3Phương trình tham số của đường thẳng là
Do đó
tâm và bán kính của là
Đáp án đúng: D
Câu 6 Cho biểu thức , với Mệnh đề nào dưới đây đúng?
Đáp án đúng: C
Câu 7 Diện tích của hình phẳng giới hạn bởi hai đường cong có phương trình và
bằng:
Đáp án đúng: A
Đáp án đúng: A
Câu 9 Trong không gian , cho hai điểm và Mặt phẳng trung trực của đoạn thẳng
có phươmg trình là
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , cho hai điểm và Mặt phẳng trung trực của đoạn thẳng có phươmg trình là
Lời giải
Trang 4Vậy phương trình mặt phẳng trung trực của đoạn thẳng đi qua điểm , có véc tơ pháp tuyến
là:
Câu 10 Trên tập các số phức, xét phương trình ( là tham số thực) Có bao nhiêu giá trị nguyên của tham số để phương trình có hai nghiệm phân biệt thỏa mãn
?
Đáp án đúng: A
Giải thích chi tiết: Trên tập các số phức, xét phương trình ( là tham số thực) Có bao nhiêu giá trị nguyên của tham số để phương trình có hai nghiệm phân biệt thỏa mãn
?
A B C D .
Lời giải
Ta có là biệt thức của phương trình
hệ vô nghiệm
TH2: Xét khi đó phương trình có hai nghiệm phức phân biệt và , ta có
Kết hợp điều kiện ta được Vậy có tất cả là số nguyên cần tìm
Câu 11 Cho số phức , là các số phức cùng thoả mãn điều kiện Biết rằng giá trị lớn nhất có thể đạt được của là số thực Giá trị thuộc tập hợp nào trong các tập hợp dưới đây?
Trang 5A B
Đáp án đúng: B
Giải thích chi tiết:
Đặt
Ta có
* TH1: cùng thuộc một trong hai đường tròn
Khi đó:
Mà
Nên
Trang 6* TH2: Đặc biệt hoá như sau (*)
Ta có:
Câu 12 Thể tích khối lăng trụ có chiều cao bằng , diện tích đáy là là
Đáp án đúng: C
Giải thích chi tiết: Thể tích khối lăng trụ là
Câu 13 Gọi là tập nghiệm của phương trình Tính tổng tất cả các phần tử của
Đáp án đúng: B
Đáp án đúng: B
Giải thích chi tiết:
Gọi là điểm biểu diễn của số phức , là điểm biểu diễn của số phức
Trang 7Ta có
Vậy thuộc đường tròn
Vậy thuộc đường thẳng
Dễ thấy đường thẳng không cắt và
Áp dụng bất đẳng thức tam giác, cho bộ ba điểm ta có
Đáp án đúng: A
Lời giải
Ta có:
Câu 16
Cho hàm số có đạo hàm trên và đồ thị như hình vẽ bên
khẳng định nào đúng
Trang 8A B
Đáp án đúng: A
Khảo sát ta có
Câu 17 Cho hình lăng trụ đứng tam giác có đáy ABC là tam giác đều cạnh a , Thể tích của khối lăng trụ là
Đáp án đúng: D
Câu 18 Một hình nón có chiều cao và bán kính đáy bằng Tính diện tích xung quanh của hình nón
Đáp án đúng: C
Đáp án đúng: C
Giải thích chi tiết: Áp dụng định nghĩa Ta có:
Chọn
Vậy
Trang 9Câu 20 Đạo hàm của hàm số là:
Đáp án đúng: B
Câu 21 Cho là một nguyên hàm của hàm số Gọi là một nguyên hàm của
tối giản, là số nguyên tố Hãy tính giá trị của
Đáp án đúng: C
Giải thích chi tiết: Ta có
Đáp án đúng: A
A B C D .
Lời giải
Câu 23 Cho hình nón có bán kính đường tròn đáy bằng , chiều cao bằng , độ dài đường sinh bằng Khẳng định nào sau đây là đúng?
Trang 10C D
Đáp án đúng: D
Câu 24 : Khối chóp đều S.ABCD có mặt đáy là:
Đáp án đúng: D
Câu 25 Cho và đặt Khẳng định nào sau đây sai?
A
B
C
D
Đáp án đúng: A
Câu 26
Ông A đi làm lúc giờ sáng và đến cơ quan lúc giờ phút bằng xe gắn máy, trên đường đến cơ quan ông
A gặp một người nên ông A phải giảm tốc độ để đảm bảo an toàn rồi sau đó lại từ từ tăng tốc độ để đến cơ quan làm việc Hỏi quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan dài bao nhiêu mét?
(Đồ thị dưới đây mô tả vận tốc chuyển động của ông A theo thời gian khi đến cơ quan)
Đáp án đúng: B
Giải thích chi tiết: Quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan là
Trang 11Trong đó:
+) là diện tích tam giác giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
+) là diện tích hình thang giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
Suy ra
Câu 27 Có bao nhiêu cách xếp bạn A, B, C, D, E, F vào một ghế dài sao cho bạn A, F ngồi ở đầu ghế?
Đáp án đúng: B
Giải thích chi tiết: Có bao nhiêu cách xếp bạn A, B, C, D, E, F vào một ghế dài sao cho bạn A, F ngồi ở
đầu ghế?
Hướng dẫn giải
Có cách xếp bạn A, F ngồi ở đầu ghế
Có cách xếp bạn vào vị trí còn lại
Vậy: Có (cách xếp)
Câu 28 Cho số phức z thoả mãn điều kiện (1−i) z=2+i Phần ảo của số phức z bằng
A − 3
Đáp án đúng: A
Câu 29 Cho tam giác vuông cân tại có cạnh Quay tam giác này xung quanh cạnh Thể tích của khối nón được tạo thành bằng:
Đáp án đúng: D
Câu 30 Số nghiệm của phương trình là
Đáp án đúng: A
Giải thích chi tiết:
Câu 31 Trong mặt phẳng toạ độ cho ba điểm Tính diện tích tam giác
Đáp án đúng: C
Câu 32
Trang 12Cho hai số phức: , Tìm số phức
Đáp án đúng: A
Đáp án đúng: C
Câu 34 Cho hình chóp S ABC có đáyABC là tam giác vuông tại A và SB vuông góc với mặt phẳng đáy, biết AC=a√3, BC=2a, SC=a√7 Tính thể tích V của khối chóp S ABC
A V = a3√3
3 . B V =3a3. C V = 3a
3
2 . D V = a
3
2.
Đáp án đúng: D
Câu 35 Cho hình trụ tròn xoay có bán kính đáy là 2a, chiều cao là 3a Diện tích xung quanh hình trụ bằng
Đáp án đúng: D
Câu 36 Cho hàm số liên tục trên thỏa mãn
Giá trị của thuộc khoảng nào trong các khoảng sau?
Đáp án đúng: D
Giải thích chi tiết: Ta có
Câu 37 Cho hàm số Khẳng định nào dưới đây đúng?
Trang 13A B
Đáp án đúng: C
Câu 38 Trên khoảng , đạo hàm của hàm số là
Đáp án đúng: A
Giải thích chi tiết: (MĐ 104 2020-2021 – ĐỢT 1) Trên khoảng , đạo hàm của hàm số là
Lời giải
Câu 39 Cho M(-3; 4; 1); N(-13; 2; -3) Biết ⃗u=4 ⃗i−2⃗ MN Độ dài vecto ⃗u là:
A 2√11 B 4√41 C 2√30 D 4√91
Đáp án đúng: B
Câu 40 Trong không gian với hệ trục , mặt phẳng chứa trục và đi qua điểm có phương trình dạng
Đáp án đúng: A
Giải thích chi tiết: Trong không gian với hệ trục , mặt phẳng chứa trục và đi qua điểm
có phương trình dạng
Lời giải
pháp tuyến
Cách khác:
đi qua điểm nên ta có