Mặt phẳng trung trực của đoạn thẳng có phươmg trình là Đáp án đúng: D Giải thích chi tiết: Trong không gian , cho hai điểm và.. Đường thẳng qua và vuông góc với mặt phẳng có phương trì
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN MÔN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 030.
Câu 1 Thể tích một khối cầu có đường kính bằng là
Đáp án đúng: C
Câu 2 Trong không gian , cho và Vectơ có tọa độ là
Đáp án đúng: B
Câu 3 Trong không gian , cho hai điểm và Mặt phẳng trung trực của đoạn thẳng
có phươmg trình là
Đáp án đúng: D
Giải thích chi tiết: Trong không gian , cho hai điểm và Mặt phẳng trung trực của đoạn thẳng có phươmg trình là
Lời giải
Vậy phương trình mặt phẳng trung trực của đoạn thẳng đi qua điểm , có véc tơ pháp tuyến
là:
Câu 4 Rút gọn biểu thức , với ta được
Đáp án đúng: D
Trang 2Câu 5 Cho hàm số liên tục trên thỏa mãn
Giá trị của thuộc khoảng nào trong các khoảng sau?
Đáp án đúng: D
Giải thích chi tiết: Ta có
Câu 6 Trong mặt phẳng với hệ tọa độ biết đường tròn có ảnh qua phép quay tâm góc quay là
Đáp án đúng: A
Câu 7 Cho hình trụ tròn xoay có bán kính đáy là 2a, chiều cao là 3a Diện tích xung quanh hình trụ bằng
Đáp án đúng: A
Câu 8 Cho số phức , là các số phức cùng thoả mãn điều kiện Biết rằng giá trị lớn nhất có thể đạt được của là số thực Giá trị thuộc tập hợp nào trong các tập hợp dưới đây?
Đáp án đúng: B
Trang 3Giải thích chi tiết:
Đặt
Ta có
* TH1: cùng thuộc một trong hai đường tròn
Khi đó:
Mà
Nên
* TH2: Đặc biệt hoá như sau (*)
Trang 4Ta có:
Đáp án đúng: A
Giải thích chi tiết:
Gọi là điểm biểu diễn của số phức , là điểm biểu diễn của số phức
Vậy thuộc đường tròn
Vậy thuộc đường thẳng
Dễ thấy đường thẳng không cắt và
Áp dụng bất đẳng thức tam giác, cho bộ ba điểm ta có
Trang 5Câu 10 Trong không gian , cho tam giác nhọn có , , lần lượt là hình chiếu vuông góc của , , trên các cạnh , , Đường thẳng qua và vuông góc với mặt phẳng có phương trình là
Đáp án đúng: B
Giải thích chi tiết:
Ta có tứ giác là tứ giác nội tiếp đường tròn ( vì có hai góc vuông , cùng nhìn dưới một góc vuông) suy ra
Ta có tứ giác là tứ giác nội tiếp đường tròn ( vì có hai góc vuông , cùng nhìn dưới một góc vuông) suy ra
Từ và suy ra do đó là đường phân giác trong của góc và là đường phân giác ngoài của góc
Tương tự ta chứng minh được là đường phân giác trong của góc và là đường phân giác ngoài của góc
Gọi , lần lượt là chân đường phân giác ngoài của góc và
Trang 6Ta có ta có
Đường thẳng qua nhận làm vec tơ chỉ phương có phương trình
Đường thẳng qua nhận làm vec tơ chỉ phương có phương trình
Khi đó đường thẳng đi qua và vuông góc với mặt phẳng có véc tơ chỉ phương nên có
Nhận xét:
Mấu chốt của bài toán trên là chứng minh trực tâm của tam giác là tâm đường tròn nội tiếp tam giác Khi đó, ta tìm tọa độ điểm dựa vào tính chất quen thuộc sau: “Cho tam giác với là tâm
Ta cũng có thể tìm ngay tọa độ điểm bằng cách chứng minh là tâm đường tròn bàng tiếp góc của tam giác Khi đó, ta tìm tọa độ điểm dựa vào tính chất quen thuộc sau: “Cho tam giác với là
Câu 11 Trong không gian Oxyz, cho hai điểm và Mặt phẳng trung trực của đoạn thẳng
AB có phương trình là
Đáp án đúng: C
Câu 12 Cho hình nón có bán kính đường tròn đáy bằng , chiều cao bằng , độ dài đường sinh bằng Khẳng định nào sau đây là đúng?
Đáp án đúng: D
Câu 13 Cho hình phẳng giới hạn bởi đồ thị hàm số , , , Tính thể tích của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
Trang 7A B
Đáp án đúng: C
Câu 14 Đạo hàm của hàm số là:
Đáp án đúng: B
Câu 15 Tọa độ trọng tâm I của tứ diện ABCD là:
Đáp án đúng: B
Câu 16
Cho hàm số có đồ thị như hình vẽ Đường tròn tâm có duy nhất một điểm chung với
Biết , diện tích của hình thang gần nhất với số nào sau đây
Đáp án đúng: D
Giải thích chi tiết: Cho hàm số có đồ thị như hình vẽ Đường tròn tâm có duy nhất một điểm chung với Biết , diện tích của hình thang gần nhất với số nào sau đây
Trang 8Lời giải
Đường thẳng đi qua và song song với trục hoành cắt đồ thị tại
Gọi là tiếp tuyến của tại thì phương trình là
tiếp xúc với đường tròn tâm tại thì là tiếp tuyến chung của và đường tròn tâm
Vậy
Câu 17 Diện tích của hình phẳng giới hạn bởi hai đường cong có phương trình và
bằng:
Đáp án đúng: C
Câu 18
Phương trình đường tiệm cận ngang của đồ thị hàm số là:
Đáp án đúng: B
Câu 19 Cho x , y là các số thực thỏa mãn log2 y
2√1+x=3(y−√1+ x)− y2+ x Tìm giá trị nhỏ nhất của biểu thức K= x− y
A minK =−54 B minK =−1 C minK =−2 D minK =−34
Đáp án đúng: A
Câu 20 Cắt hình trụ bởi một mặt phẳng đi qua trục được thiết diện là một hình vuông có diện tích bằng Thể
tích của khối trụ tạo nên hình trụ đã cho bằng
Đáp án đúng: C
Giải thích chi tiết: Cắt hình trụ bởi một mặt phẳng đi qua trục được thiết diện là một hình vuông có diện tích
bằng Thể tích của khối trụ tạo nên hình trụ đã cho bằng
A B C D
Lời giải
Trang 9Thiếu diện là hình vuông
Thể tích khối trụ đã cho bằng :
Câu 21
Để xác định bán kính của chiếc đĩa cổ hình tròn bị vỡ một phần, các nhà khảo cổ lấy ba điểm trên vành đĩa và tiến hành đo đạc thu được kết quả như sau: cạnh , Bán kính của chiếc đĩa xấp xỉ là
Đáp án đúng: C
Giải thích chi tiết: Áp dụng định lý trong tam giác , ta có
Câu 22
Đáp án đúng: B
Đáp án đúng: C
Câu 24
Ông A đi làm lúc giờ sáng và đến cơ quan lúc giờ phút bằng xe gắn máy, trên đường đến cơ quan ông
A gặp một người nên ông A phải giảm tốc độ để đảm bảo an toàn rồi sau đó lại từ từ tăng tốc độ để đến cơ quan làm việc Hỏi quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan dài bao nhiêu mét?
(Đồ thị dưới đây mô tả vận tốc chuyển động của ông A theo thời gian khi đến cơ quan)
Trang 10A B C D
Đáp án đúng: A
Giải thích chi tiết: Quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan là
Trong đó:
+) là diện tích tam giác giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
+) là diện tích hình thang giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
Suy ra
Câu 25 Cho hình chóp có đáy là hình bình hành, các cạnh bên của hình chóp bằng ,
Khi thể tích khối chóp đạt giá trị lớn nhất, tính diện tích mặt cầu ngoại tiếp
Đáp án đúng: B
Giải thích chi tiết:
Gọi là giao điểm của và
Trang 11Khi đó
Ta có:
Vậy hình bình hành là hình chữ nhật
Đặt
Xét vuông tại , ta có:
Thể tích khối chóp là:
Áp dụng bất đẳng thức : ta có:
Gọi là trung điểm của , trong kẻ đường trung trực của cắt tại
Khi đó mặt cầu ngoại tiếp khối chóp có tâm và bán kính
Câu 26 Họ nguyên hàm của hàm số là
Đáp án đúng: D
Câu 27 Cho tam giác vuông cân tại có cạnh Quay tam giác này xung quanh cạnh Thể tích của khối nón được tạo thành bằng:
Đáp án đúng: A
Câu 28 Tập nghiệm của bất phương trình là
Đáp án đúng: B
Vậy tập nghiệm bất phương trình đã cho là:
Trang 12C D
Đáp án đúng: C
Lời giải
Ta có:
Câu 30 Cho hình chóp S ABC có đáyABC là tam giác vuông tại A và SB vuông góc với mặt phẳng đáy, biết AC=a√3, BC=2a, SC=a√7 Tính thể tích V của khối chóp S ABC
A V = a3√3
3 . B V = 3a
3
2 . C V =3a3. D V = a
3
2.
Đáp án đúng: D
Đáp án đúng: C
Câu 32 Trong không gian với hệ tọa độ , cho Viết phương trình mặt phẳng cắt các trục tọa độ , lần lượt tại các điểm sao cho là trọng tâm tam giác
Đáp án đúng: D
Giải thích chi tiết: Trong không gian với hệ tọa độ , cho Viết phương trình mặt phẳng cắt các trục tọa độ , lần lượt tại các điểm sao cho là trọng tâm tam giác
Lời giải
Dó đó, phương trình mặt phẳng có dạng:
Vì là trọng tâm tam giác nên ta có:
Vậy phương trình mặt phẳng :
Trang 13Câu 33
phẳng cắt đường thẳng tại Biết thể tích khối tứ diện là Thể tích khối hộp đã cho
bằng
Đáp án đúng: C
Giải thích chi tiết:
Lời giải
Gọi Theo tính chất của giao tuyến suy ra nên là trung điểm của Suy
ra lần lượt là trung điểm
Ta có
Mặt khác
Từ đó suy ra
Câu 34 Cho số phức Điểm biểu diễn số phức trên mặt phẳng phức là
Đáp án đúng: A
Giải thích chi tiết: Cho số phức Điểm biểu diễn số phức trên mặt phẳng phức là
Lời giải
Điểm biểu diễn số phức trên mặt phẳng phức là
Trang 14A B C D .
Đáp án đúng: B
A B C D .
Lời giải
Câu 36 Cho hình nón (N )có bán kính đáy bằng 2a, độ dài đường sinh bằng 5a. Diện tích xung quanh của
(N ) bằng bao nhiêu ?
A 45 π a2. B 20 π a2. C 10π a2. D 15π a2.
Đáp án đúng: C
Câu 37 : Khối chóp đều S.ABCD có mặt đáy là:
Đáp án đúng: A
, lần lượt thuộc mặt cầu và mặt phẳng Biết rằng tạo với mặt phẳng một góc không đổi Nếu có độ dài lớn nhất thì tập hợp các điểm , cùng nằm trên một mặt cầu Tính thể tích của mặt cầu
Đáp án đúng: D
Giải thích chi tiết:
Dễ thấy, để có độ dài lớn nhất thì , , thằng hàng Vì , là các điểm tồn tại duy nhất nên là điểm tồn tại duy nhất
Do đó ta chỉ cần xét tập hợp các điểm thuộc mặt phẳng
Trang 15Ta có:
Do tam giác vuông cân tại với mọi thuộc mặt phẳng Do đó , thuộc mặt cầu tâm , bán kính
Câu 39 Cho hàm số Khẳng định nào dưới đây đúng?
Đáp án đúng: A
Câu 40 Cho là một nguyên hàm của hàm số Gọi là một nguyên hàm của
tối giản, là số nguyên tố Hãy tính giá trị của
Đáp án đúng: B
Giải thích chi tiết: Ta có