- Làm các dạng bài tập: tìm giá trị của biến để đa thức bằng 0, đa thưc đạt giá trị lớn nhất hoặc giá trị nhỏ nhất, đa thức luôn dương, hoặc luôn âm.. Chuẩn Bị: - Bảng phụ ghi bài tập và[r]
Trang 1Tuần: 18 Ngày soạn: 05/12/2009
ÔN TẬP HỌC KỲ I
I Mục Tiêu:
- Ôn tập các phép tính nhân, chia đơn đa thức
- Củng cố các HĐT đáng nhớ để vận dụngvào giải toán
- Tiếp tục rèn luyện kĩ năng thực hiện phép tính, rút gọn biểu thức,phân tích đa thức thành nhân tử, tính giá trị biểu thức
- Làm các dạng bài tập: tìm giá trị của biến để đa thức bằng 0, đa thưc đạt giá trị lớn nhất (hoặc giá trị nhỏ nhất), đa thức luôn dương, (hoặc luôn âm)
II Chuẩn Bị:
- Bảng phụ ghi bài tập và HĐT
- Ôn các quy tắc nhân đơn đa thức, hằng đẳng thức đáng nhớ, các phương pháp phân tích đa phức thành nhân tử Bảng nhóm
III Tiến Trình Dạy Học:
1 Ổn định lớp: Kiểm tra sĩ số
2 Kiểm tra bài cũ:
3 Nội dung bài dạy:
GV: Phát biểu nhân đơn thức
với đa thức Viết công thức
tổng quát
GV yêu cầu HS làm bài tập:
Bài 1: a) xy(xy-5x+10y)
5
2
b) (x+3y)(x2-2xy)
Bài 3: Rút gọn biểu thức:
a)(2x+1)2+(2x-1)2
-2(1+2x)(2x-1)
b)(x-1)3-(x+2)(x2-2x+4)
+3(x-1)(x+1)
Bài 4:Làm phép chia:
a) 2x3 +5x2-2x+3) : (2x2-x+1)
b) (2x3-5x2+6x-15):(2x-5)
GV: Các phép chia trên là
phép chia hết, vậy khi nào đa
thức A chia hết cho đa thức B
GV: Thế nào là phân tích đa
thức thành nhân tử? Hãy nêu
HS phát biểu và làm theo yêu cầu:
A.(B+C) = A.B + A.C (A+B)(C+D)=AC+AD+BC+BD
HS cả lớp làm bài ,1HS lên bảng
HS làm bài tập Hai HS lên bảng
HS lên bảng thực hiện
HS: nếu tìm được đa thức Q sao cho A=B.Q
1/ Ôn tập các phép tính về
đơn, đa thức, hằng đẳng thức:
1) Bài 1:
a) xy(xy-5x+10y)
5 2
= x2y2-2x2y+4xy2
5 2
b) (x+3y)(x2-2xy)
=x3-2x2y+3x2y-6xy2
=x3+x2y-6xy2.
Bài 3: Rút gọn biểu thức: a)(2x+1)2+(2x-1)2 -2(1+2x)(2x-1)
KQ: bằng 4
b)(x-1)3-(x+2)(x2-2x+4) +3(x-1)(x+1)
KQ: 3(x-4)
Bài 4:Làm phép chia:
a) 2x3 +5x2-2x+3) : (2x2-x+1)
KQ: Thương x+3
dư 0
b) (2x3-5x2+6x-15):(2x-5)
KQ: Thương x 2 +3
dư 0
2/ Phân tích đa thức thành
nhân tử:
Trang 2các phương pháp phân tích đa
thức thành nhân tử?
GV lưu ý thêm phương pháp
tách hạng tử và thêm bớt hạng
tử
GV yêu cầu HS làm bài tập:
Bài 6: Phân tích đa thức thành
nhân tử:
a) x3-3x2-4x+12
b) x3+3x2-3x-1
c) x4-5x2+4
GV kiểm tra và nhận xét
GV lưu ý: Từ phép chia hết ta
dùng kết quả để phân tích đa
thức thành nhân tử
Bài 7: Tìm x biết:
a) 3x3-3x = 0
Hãy nêu cách giải?
GV gọi HS đứng tại chỗ trình
bày bài giải bằng lời, GV ghi
lại lên bảng
b) x2 + 36 = 12x
GV cho HS làm bài tập:
Bài 8:
a) Chứng đa thức
A=x2-x+1>0 với mọi x
GV gợi ý : Biến đổi biểu thức
sao cho x nằm hết trong bình
phương một đa thức
GV Hỏi tiếp: Hãy tìm giá trị
HS: Trả lời
HS hoạt động nhóm, hai nhóm làm một câu
Các đại diện nhóm lên bảng trình bày bài làm
HS nhận xét
HS làm bài vào vở
HS trả lời:
HS1:
HS2:
HS đứng tại chỗ giải miệng:
- Phân tích đa thức thành nhân tử
- Các phương pháp phân tích
đa thức thành nhân tử
Bài 6: Phân tích đa thức thành nhân tử:
b) x3-3x2-4x+12
KQ:(x-3)(x-2)(x+2)
b) x3+3x2-3x-1
KQ:(x-1)(x 2 +4x+1)
c) x4-5x2+4
KQ:(x-1)(x+1)(x-2)(x+2)
Bài 7: Tìm x biết:
a) 3x3-3x = 0 Giải:
a) 3x3-3x = 0
=>3x(x2-1) = 0
=>3x(x-1)(x+1) = 0
=>x=0 hoặc x-1=0 hoặc x+1 = 0
=>x = 0 hoặc x =1 hoặc
x = -1
b) x2 + 36 = 12x
x2 - 12x + 36 = 0
(x-6)2 = 0
(x-6) = 0
x = 6
Bài 8:
a) Chứng đa thức A=x2-x+1>0 với mọi x Giải:
A = x2-2.x + +
2
1 4
1 4 3
=(x- )2+ Ta có:
2
1 4 3
(x- )2 0 với mọi x
2
1
=> (x - )2 +
2
1
4
3 4 3
Vậy A > 0 với mọi x
Vì A với mọi x => Giá trị 3
Trang 3nhỏ nhất của biểu thức sau:
C = 4x-x2
GV gợi ý: Tương tự như
3
=> Giá trị nhỏ nhất
HS lam dưới sự hướng dẫn của GV 2 1 b) Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau: C = 4x - x2 Giải: C = -(x2-4x) =
= -(x-2)2+4 4 Vậy giá trị lớn nhất của C là 4 tại x=2 4 Củng cố: 5 Hướng dẫn về nhà: - Xem lại các bài đã làm - Chuẩn bị tiết au ôn tập tiếp IV Rút Kinh Nghiệm Và Bổ Sung:
Trang 4
Tuần: 18 Ngày soạn: 05/12/2009
ÔN TẬP HỌC KỲ I (tt)
I Mục Tiêu:
- HS được củng cố vững chắc các khái niệm
+ Phân thức đại số
+ Hai phân thức bằng nhau
+ Phân thức đối
+ Phân thức nghịch đảo + Biểu thức hữu tỷ
+ Tìm điều kiện của biến để giá trị của phân thức được xác định
+ Tiếp tục củng cố cho HS các khái niệm về biểu thức hữu tỷ, phân thức đại số
- Cho HS làm một vài bài tập phát triển tư duy dạng: tìm giá trị của biến để giá trị của biểu thức nguyên, tìm giá trị lớn nhất (hoặc nhỏ nhất) của biểu thức
- Tiếp tục cho HS rèn kỹ năng vận dụng các quy tắc cộng, trừ, nhân, chia trên các phân thức và thứ tự thực hiện các phép tính trong một biểu thức
- Tiếp tục rèn luyện kỹ năng rút gọn biểu thức, tìm điều kiện của biến, tính giá trị của biểu thức, tìm giá trị của biến để phân thức bằng 0
II Chuẩn Bị:
GV: - Bảng tóm tắt chương II
HS: - Làm đáp án 12 câu hỏi ôn tập chương II và các bài tập GV đã cho
- Bảng nhóm III Tiến Trình Dạy Học:
1 Ổn định lớp: Kiểm tra sĩ số
2 Kiểm tra bài cũ:
3 Nội dung bài dạy:
- Yêu cầu HS trả lời câu hỏi 1
trang 61 SGK
- GV đưa ra sơ đồ
để thấy rõ mối quan hệ giữa tập
R, tập đa thức và tập phân thức
đại số
GV nêu câu hỏi 2, câu hỏi 3
- GV cho HS quan sát bảng tóm
tắt trang 60 (Phần I) trên bảng
phụ để HS ghi nhớ
- HS trả lời câu hỏi 1 trang 61 SGK
HS trả lời câu hỏi 2 và câu hỏi 3
A Khái niệm về phân thức và tính chất của phân thức đại số
1 Định nghĩa phân thức đại số (SGK trang 35)
2 Hai phân thức bằng nhau:
nếu A D = B C
D
C B
A
Tính chất cơ bản của phân thức đại
số (SGK trang 37)
R Đa
thức
Phân thức
Trang 5Gv hỏi: Muốn rút gọn một phân
thức đại số ta làm thế nào?
Hãy nêu thứ tự thực hiện phép
toán trong biểu thức
Với bài này có cần tìm điều
kiện của x hay không?
Gọi 1 HS lên bảng giải
GV yêu cầu một HS lên bảng
thay vào biểu thức rồi
y
x
xy
P
viết biểu thức thành dãy tính
theo hàng ngang
Yêu cầu HS khác nêu thứ tự
thực hiện phép toán rồi thực
hiện rút gọn biểu thức
- HS trả lời…
- HS: Phải quy đồng mẫu, làm phép cộng trong ngoặc trước, tiếp theo là phép nhân, cuối cùng là phép trừ
- HS: trả lời… không cần tìm điều kiện của x
- 1 HS lên bảng thay
y x
xy P
và thực hiện theo yêu cầu
(2x – 6) (3x + 6) = 6x2 + 3x – 18
=> 3 (2x2 + x – 6) = (2x – 6) (3x + 6)
=>
6 x x
6 x 3
x
3
2
Cách 2: (Rút gọn phân thức)
3 x
3
6 x x 6 x 2 Bài tập 58c/62 1 x 1 x 1 x 1 x x 1 x
x 1 1 1 x x 1 1 x x x 1 x 1 2 2 2 2 2 2 3 Bài 59 a/62 y x x y y y x y x xy x y x y x y x
y x xy y y x xy y y x xy x y x xy x P y yP P x xP 2 2 2 2 4 Củng cố: 5 Hướng dẫn về nhà: - Xem lại các bài tập tiếp theo - Chuẩn bị kiểm tra HKI IV Rút Kinh Nghiệm Và Bổ Sung: