1. Trang chủ
  2. » Giáo án - Bài giảng

HINH 8 DIU mẫu

40 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 295,65 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học, năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh... - Định hướng năng lực: Phát triển năng lực giải qu

Trang 1

1 Kiến thức: HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm :

Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của

tứ giác & các tính chất của tứ giác Tổng bốn góc của tứ giác là 3600.

2 Kỹ năng: HS tính được số đo của một góc khi biết ba góc cũn lại, vẽ được tứ

giác khi biết số đo 4 cạnh & 1 đường chộo.

3.Thái độ: Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600

4 Năng lực, phẩm chất:

4.1 Năng lực:

- NL chung: Phát triển năng lực giải quyết vấn đề, năng lực tự học.

- NL chuyờn biệt: Năng lực ngôn ngữ toán học, năng lực sử dụng công cụ, năng

lực vẽ hỡnh.

4.2 Phẩm chất: Tự lập, tự tin, tự chủ

II CHUẨN BỊ CỦA GV VÀ HS:

1 Giỏo viờn : Com pa, thước, 2 tranh vẽ hỡnh 1 ( sgk ) Hỡnh 5 (sgk) bảng phụ

2 Học sinh : Thước, com pa, bảng nhóm

III TIẾN TRèNH TIẾT HỌC:

1 Ổn đinh tổ chức:

* Kiểm tra sĩ số :

Trang 2

8A : 8B:

* Kiểm tra bài cũ:

GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc.

2 Tổ chức các hoạt động dạy học:

2.1 Khởi động:

- GV giới thiệu chương trỡnh hỡnh học 8.

- GV giới thiệu chương I.

2.2 Các hoạt động hỡnh thành kiến thức:

Hoạt động của GV và HS Nội dung cần đạt

HĐ1: Định nghĩa

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

Trang 3

phải là tứ giỏc Vậy tứ giỏc là gỡ ?

- GV: Chốt lại & ghi định nghĩa

- GV: giải thích : 4 đoạn thẳng AB, BC,

CD, DA trong đó đoạn đầu của đoạn

thẳng thứ nhất trùng với điểm cuối của

đoạn thẳng thứ 4.

+ 4 đoạn thẳng AB, BC, CD, DA trong

đó không có bất cứ 2 đoạn thẳng nào

cùng nằm trên 1 đường thẳng.

+ Cách đọc tên tứ giác phải đọc hoặc

viết theo thứ tự các đoạn thẳng như:

ABCD, BCDA, ADBC …

Trang 4

- HS ghi bài

* Định nghĩa tứ giác lồi

-GV: Hóy lấy mộp thước kẻ lần lượt

đặt trùng lên mỗi cạch của tứ giác ở H1

rồi quan sát

- H1(a) luôn có hiện tượng gỡ xảy ra ?

- H1(b) (c) có hiện tượng gỡ xảy ra ?

phải là tứ giỏc lồi

GV: Vẽ H3 và giải thớch khỏi niệm:

+ Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau

+ hai đỉnh không kề nhau gọi là hai đỉnh đối nhau

+ Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau

+ Hai cạnh khụng kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q

HĐ2: Tổng cỏc gúc của một tứ giỏc

Trang 5

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

D

C

B A

* Định lý: SGK

3 Hoạt động luyện tập:

- GV: cho HS làm bài tập trang 66 Hóy tớnh cỏc gúc cũn lại

(Đề bài và hình vẽ đưa lên màn hình).

Trang 6

HS trả lời miệng, mỗi HS một phần.

- Một tứ giác không thể có cả bốn góc đều tù vì như thế thì tổng bốn góc lớn hơn

Trang 7

* Chú ý : T/c các đường phõn giỏc của tam giỏc cõn

* HD bài 4: Dùng com pa & thước thẳng chia khoảng cách vẽ tam giác có 1 cạnh

là đường chéo trước rồi vẽ 2 cạch cũn lại

* Bài tập NC: 1.Bài 2 sổ tay toỏn học)

Cho tứ giác lồi ABCD chứng minh rằng: đoạn thẳng MN nối trung điểm của 2 cạnh đối diện nhỏ hơn hoặc bằng nửa tổng 2 cạnh cũn lại

(Gợi ý: Nối trung điểm đường chéo)

Bài 2: Tứ giác ABCD có = 650, = 1170, = 710 Tính số đo góc ngoài tại đỉnh D (Góc ngoài là góc kề bù với một góc của tứ giác)

1 Kiến thức: HS nắm vững các định nghĩa về hỡnh thang, hỡnh thang vuụng cỏc

khỏi niệm : cạnh bờn, đáy , đường cao của hỡnh thang.

Trang 8

2 Kỹ năng: Nhận biết hỡnh thang hỡnh thang vuụng, tớnh được các góc cũn lại

của hỡnh thang khi biết một số yếu tố về gúc.

3 Thái độ: Rèn tư duy suy luận, sáng tạo.

II CHUẨN BỊ CỦA GV VÀ HS:

1 Giỏo viờn : Com pa, thước, tranh vẽ bảng phụ, thước đo góc.

2 Học sinh : - Thước, com pa, bảng nhóm.

Trang 9

Các cạnh đối của tứ giác ABCD có gỡ đặc biệt?

- Kĩ thuật: Động nóo, đặt câu hỏi, chia nhóm.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

giao tiếp năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

Áp dụng định lí tổng các góc trong

tứ giác ABCD :

0

0 0

0 0

0

125 ˆ

) 70 55

110 ( 360 ˆ

) ˆ ˆ ˆ ( 360 ˆ

Trang 10

- GV: Em hóy nờu định nghĩa thế nào là

ˆA + Dˆ = 180 mà hai húc ở vị trớ trong

cựng phớa nờn AB// CD �ABCD là

* ?1 (H.a) ˆA1 = ˆB = 600 �AD// BC

�Hỡnh thang

Trang 11

H

G F

�IK khụng song song với MN

� đó không phải là hỡnh thang

* Nhận xột:

+ Trong hỡnh thang 2 gúc kề một cạnh

bự nhau (cú tổng = 1800) + Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau � Hỡnh thang.

Trang 12

D C

- Để HS tự c/m: Có thể gợi ý HS nối đường chéo AC để tạo ra cặp tam giác bằng nhau Bài toỏn 2: GT ABCD là hỡnh thang đáyAB//CD;AB=CD

KL AD// BC; AD = BC A B

D C

- GV: qua bài 1 & bài 2 em cú nhận xột

gỡ ?

* Bài toỏn 1

? 2 - Hỡnh thang ABCD cú 2 đáy AB

&CD theo (gt)�AB // CD (đn)(1) mà

AD // BC (gt) (2)

Từ (1) & (2)�AD = BC; AB = CD ( 2 cắp đoạn thẳng // chắn bởi đương thẳng //.)

(cỏch 2)

ABC = ADC (g.c.g)

* Bài toỏn 2:

- CM ABC = ADC (c.g.c)

Trang 13

Nhận xột 2: (sgk)/70.

HĐ2: Hỡnh thang vuụng

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng cụng cụ, vẽ hỡnh.

- Phẩm chất: Tự lập, tự tin, tự chủ

- Hỡnh thang ABCD trờn hỡnh cú điều

gỡ đặc biệt ?

- HS : Cú một gúc vuụng.

- GV : Ta gọi hỡnh thang ABCD là hỡnh

thang vuụng Vậy thế nào là hỡnh thang

Trang 14

A B

BT: Hóy khoanh trũn vào cõu trả lời đúng nhất

Cõu 1: Chọn câu đúng trong các câu sau:

A.Hỡnh thang cú 3 gúc tự, 1 gúc nhọn.

B.Hỡnh thang cú 3 gúc vuụng, 1 gúc nhọn

C.Hỡnh thang cú 3 gúc nhọn, 1 gúc tự.

D.Hỡnh thang cú nhiều nhất 2 gúc tự, nhiều nhất 2 gúc nhọn

Cõu 2: Một hỡnh thang cú một cặp gúc đối là 1250 và 750, cặp góc đối cũn lại của hỡnh thang đó là:

Trang 15

- Trả lời cỏc cõu hỏi sau:

+ Khi nào một tứ giác được gọi là hỡnh thang.

+ Khi nào một tứ giác được gọi là hỡnh thang vuụng

- Học thuộc nhận xột.

- Tiết sau luyện tập.

Hùng Cường, ngày 20 tháng 8 năm 2018

Trang 17

TUẦN 2:

Ngày soạn: 23/08/15 Ngày dạy: 31/08/15

TIẾT 3: HèNH THANG CÂN

I Mục tiờu:

1 Kiến thức: HS nắm vững các định nghĩa, cỏc tớnh chất, cỏc dấu hiệu nhận biết

về hỡnh thang cõn

2 Kỹ năng: Nhận biết hỡnh thang hỡnh thang cõn, biết vẽ hỡnh thang cõn, biết sử

dụng định nghĩa, các tính chất vào chứng minh, biết chứng minh 1 tứ giác là hỡnh thang cõn

3 Thái độ: Rèn tư duy suy luận, sáng tạo.

II CHUẨN BỊ CỦA GV VÀ HS:

1 Giỏo viờn : com pa, thước, tranh vẽ bảng phụ, thước đo góc

2 Học sinh : Thước, com pa, bảng nhóm III TIẾN TRèNH TIẾT HỌC:

1 Ổn đinh tổ chức:

Trang 18

* Kiểm tra sĩ số :

8A : 8B:

* Kiểm tra bài cũ:

Nêu định nghĩa hỡnh thang.

Hỡnh thang ABCD trờn là hỡnh thang cõn, vậy để hiểu rừ hơn về hỡnh thang cõn

cụ và cỏc em cựng đi tỡm hiểu bài hụm nay

2.2 Các hoạt động hỡnh thành kiến thức:

Hoạt động của GV và HS Nội dung cần đạt

Trang 19

HĐ1: Định nghĩa

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

- Phẩm chất: Tự lập, tự tin, tự chủ.

Yờu cầu HS làm ?1

C D

- Hỡnh thang ABCD (AB//CD) cú gỡ

đặc biệt?

- HS: Có hai góc kề một đáy bằng nhau.

? Nêu định nghĩa hỡnh thang cõn

CD AB

ˆ ˆ

; ˆ ˆ //

Q P

N

M K I

70 0

70 0

110 0

d) c)

? 2

a) Hỡnh a,c,d là hỡnh thang cõn b) Hỡnh (a): = 1000

Hỡnh (c) : = 1100

Trang 20

HĐ2: Tớnh chất

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

Chứng minh:

AD cắt BC ở O ( Giả sử AB < DC)

Trang 21

AD không // BC ta kéo dài như thế nào ?

- Hóy giải thớch vỡ sao AD = BC ?

Trang 22

chéo AC và BD ?

GT ABCD là hỡnh thang cõn

( AB // CD)

KL AC = BD

GV: Muốn chứng minh AC = BD ta phải

chứng minh 2 tam giỏc nào bằng nhau ?

- HS: ADC = BCD

Chứng minh:* Xột ADC và BCD cú:

CD cạnh chung

D C B C D

Aˆ  ˆ = (hai gúc kề một đáy hỡnh thang cõn )

AD = BC ( cạnh bờn của hỡnh thang cõn)

� ADC = BCD ( c.g.c)� AC = BD

HĐ3: Dấu hiệu nhận biết hỡnh thang cõn

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân, hoạt động nhóm.

- Kĩ thuật: Động nóo, đặt câu hỏi, chia nhóm.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng cụng cụ, vẽ hỡnh.

- Phẩm chất: Tự lập, tự tin, tự chủ.

- GV cho HS thực hiện ?3 làm việc theo

3) Dấu hiệu nhận biết hỡnh thang cõn

?3

Trang 23

nhóm trong 3 phút

(Đề bài đưa lên bảng phụ)

Từ dự đoán của HS qua thực hiện ?3

- GV đưa nội dung định lí 3 Tr74 SGK.

- GV hỏi: Có những dấu hiệu nào để

nhận biết hình thang cân?

- HS: Dấu hiệu nhận biết hình thang cân.

1 Hình thang có hai góc kề một đáy

bằng nhau là hình thang cân.

2 Hình thang có hai đường chéo bằng

nhau là hình thang cân.

- GV: Dấu hiệu 1 dựa vào định nghĩa

Dấu hiệu 2 dựa vào định lí 3.

B A

GV hỏi: Qua giờ học này, chúng ta cần ghi nhớ những nội dung kiến thức nào?

HS: Ta cần nhớ: định nghĩa, tính chất và dấu hiệu nhận biết hình thang cân.

- Tứ giác ABCD (BC // AD) là hình thang cân cần thêm điều kiện gì?

- Tứ giác ABCD có BC // AD.

Trang 24

=> ABCD là hình thang, đáy là BC và AD Hình thang ABCD là cân khi có (hoặc ) hoặc đường chéo BD = AC.

2.4 Hoạt động vận dụng:

BT trắc nghiệm:

Cõu1: Điền các cụm từ thích hợp vào chỗ trống:

A Hỡnh thang cõn là

B Hỡnh thang cú hai đường chéo là hỡnh thang cõn

C Hai cạnh bờn của hỡnh thang cõn

D Hỡnh thang cõn cú hai gúc kề với một đáy

Cõu2: Hóy điền chữ “Đ” hoặc chữ “S”vào mỗi câu khẳng định sau:

A.Tứ giỏc cú hai cạnh bờn bằng nhau làn hỡnh thang cõn

B.Hỡnh thang cõn cú hai cạnh bờn bằng nhau.

C.Hỡnh thang cõn cú hai gúc kề với cạnh đáy bù nhau.

D.Hỡnh thang cõn cú hai gúc kề với cạnh đáy bằng nhau.

Cõu3:Khoanh trũn vào chữ cỏi in hoa đứng trướcđứng trước phương án trả lời

Trang 25

Chứng minh ADE cân ở A để có = ADE (= )

=> DE // BC có (gt) => BDEC là hình thang cân.

1 Kiến thức: HS nắm vững, củng cố các định nghĩa, các tớnh chất của hỡnh

thang, cỏc dấu hiệu nhận biết về hỡnh thang cõn

2 Kỹ năng: Nhận biết hỡnh thang hỡnh thang cõn, biết vẽ hỡnh thang cõn, biết sử

dụng định nghĩa, các tính chất vào chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau dựa vào dấu hiệu đó học Biết chứng minh 1 tứ giỏc là hỡnh thang cõn theo điều kiện cho trước Rèn luyện cách phân tích xác định phương hướng chứng minh

3 Thái độ: Rèn tư duy suy luận, sáng tạo, tính cẩn thận

Trang 26

II CHUẨN BỊ CỦA GV VÀ HS:

1 Giỏo viờn : Com pa, thước, tranh vẽ bảng phụ, thước đo góc

2 Học sinh : Thước, com pa, bảng nhóm

III TIẾN TRèNH TIẾT HỌC:

1 Ổn đinh tổ chức:

* Kiểm tra sĩ số :

8A : 8B:

* Kiểm tra bài cũ:

- HS1: Phát biểu định nghĩa hỡnh thang cõn & cỏc tớnh chất của nú ?

- HS2: Muốn CM 1 hỡnh thang nào đó là hỡnh thang cõn thỡ ta phải CM thờm ĐK nào ?

- HS3: Muốn CM 1 tứ giác nào đó là hỡnh thang cõn thỡ ta phải CM như thế nào ?

- Điền dấu “X” vào ô trống thích hợp.

1 Hình thang có hai đường chéo bằng nhau

2 Hình thang có hai cạnh bên bằng nhau là

Trang 27

3 Hình thang có hai cạnh bên bằng nhau và

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân.

- Kĩ thuật: Động nóo, đặt câu hỏi.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

- Phẩm chất: Tự lập, tự tin, tự chủ.

- Gọi HS lờn bảng chữa bài.

- Gv : Câu a để c/m tứ giác BDEC là hỡnh

thang cõn bạn đó sử dụng dấu hiệu nhận

C B

A

a)  ABC cõn tại A (gt)

Trang 28

Bˆ Cˆ (1)AD = AE (gt) �  ADE cõn tại A � D  ˆ1 E ˆ1

B 

Dˆ1 Bˆ vị trí đồng vị)

DE // BC Hay BDEC là hỡnh thang (2)

Từ (1) & (2) �BDEC là hỡnh thang cõn b) Â= 500 (gt)

Bˆ Cˆ =

0 0

180 50 2

- Phương pháp: Thuyết trỡnh, vấn đáp gợi mở, hoạt động cá nhân, hoạt động nhóm.

- Kĩ thuật: Động nóo, đặt câu hỏi, chia nhóm.

- Định hướng năng lực: Phát triển năng lực giải quyết vấn đề, năng lực tự học,

năng lực ngôn ngữ toán học, sử dụng công cụ, vẽ hỡnh.

Trang 29

KL BDEC là hình thang cân có BE = ED

GV gợi ý: so sánh với bài 15 vừa chữa,

hãy cho biết để chứng minh BEDC là hình

thang cân cần chứng minh điều gì?

a) Xét ABD và ACE có:

AB = AC (gt) Chung

vì ( và )

=> (cgc)

=> AD = AE (cạnh tương ứng) Chứng minh như bài 15

=> ED // BC và có

=> BEDC là hình thang cân b) ED // BC => (so le trong) Có (gt)

Trang 30

(Đề bài đưa lên màn hình)

- Một HS đọc lại đề bài toán.

- Một HS lên bảng vẽ hình, viết GT ; KL.

- GV yêu cầu HS hoạt động theo nhóm để

giải bài tập.

- GV cho HS hoạt động nhóm khoảng 7

phút thì yêu cầu đại diện các nhóm lên

- GV kiểm tra thêm bài của vài nhóm, có

GT Hình thang ABCD (AB // CD)

AC = BD

BE // AC; E DC.

KL a) BDE cân b) ACD = BDC c) Hình thang ABCD cân a) Hình thang ABEC có hai cạnh bên song song: AC // BE (gt).

=> AC = BE (nhận xét về hình thang)

Mà AC = BD (gt)

=> BE = BD => BDE cân.

b) Theo kết quả câu a ta có:

BDE cân tại B =>

Mà AC // BE =>

(hai góc đồng vị)

=>

Xét ACD và BDC có: AC = BD (gt) (chứng minh trên)

Cạnh DC chung.

=> ACD = BDC (cgc) c) ACD = BDC

=> ADC = BCD (hai góc tương ứng)

Trang 31

thể cho điểm => Hình thang ABCD cân (theo định nghĩa).

2.3 Hoạt động luyện tập:

Gv nhắc lại phương pháp chứng minh, vẽ 1 tứ giác là hỡnh thang cõn.

- CM các đoạn thẳng bằng nhau, tính số đo các góc tứ giác qua chứng minh hỡnh

thang.

- Nờu dấu hiệu nhận biết hỡnh thang cõn.

2.4 Hoạt động tỡm tũi, mở rộng:

*Tỡm tũi, mở rộng:

BT: Cho góc xOy trên tia Ox lấyA, trên tia Oy lấy điểm B sao cho OA=OB.Qua

trung điểm C của đoạn OA kẻ đường thắng song song với AB cắt OB tại E.Chứng

minh tứ giỏc ACEB là hỡnh thang cõn.

- Đọc và nghiên cứu bài đường trung bỡnh của tam giỏc, của hỡnh thang.

Hùng Cường, ngày 27 tháng 8 năm 2018

TUẦN 3:

Ngày soạn: 29/08/2018 Ngày dạy: 06/08/2018

Trang 32

TIẾT 5: ĐƯỜNG TRUNG BèNH CỦA TAM GIÁC

- Tư duy: Phát triển tư duy lôgic hỡnh học phẳng.

- Thái độ: Thấy được ứng dụng của ĐTB vào thực tế � yờu thớch mụn hoc.

II CHUẨN BỊ CỦA GV VÀ HS:

1 Giỏo viờn : Com pa, thước, thước đo góc, mỏy chiếu.

2 Học sinh : Chuẩn bị như phần dặn dũ tiết 4.

III TIẾN TRèNH TIẾT HỌC:

1 Ổn đinh tổ chức:

Trang 33

- GV tổ chức cho hs tham gia trũ chơi : Ai nhanh hơn.

- Giáo viên giới thiệu luật chơi :

- Chia lớp thành 3 đội chơi.

- Với mỗi câu hỏi giáo viên đưa ra, đội nào giơ tay trước thỡ đội đó giành quyền trả lời Nếu trả lời đúng thỡ được cộng điểm cho đội đó, nếu sai thi quyền trả lời cho đội tiếp theo.

- Kết thỳc trũ chơi giáo viên tổng kết điểm của mỗi đội và tuyên dương, khen thưởng cho đội thắng cuộc.

Cõu hỏi trong trũ chơi :

Các câu sau đây câu nào đúng , câu nào sai? hóy giải thớch rừ hoặc chứng minh ? 1- Hỡnh thang cú hai gúc kề hai đáy bằng nhau là một hỡnh thang cõn?

2- Tứ giác có hai đường chéo bằng nhau là hỡnh thang cõn ?

3- Tứ giác có hai góc kề 1 cạnh bù nhau và hai đường chéo bằng nhau là HT cõn 4- Tứ giỏc cú hai gúc kề 1 cạnh bằng nhau là hỡnh thang cõn.

5- Tứ giác có hai góc kề 1 cạnh bù nhau và có hai góc đối bù nhau là hỡnh thang cõn.

Đáp án: + 1- Đúng: theo đ/n; 2- Sai: HS vẽ hỡnh minh hoạ 3- Đúng: Theo đ/lý 4- Sai: HS giải thớch bằng hỡnh vẽ 5- Đúng: theo t/c

Ngày đăng: 23/02/2020, 22:45

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w