Tính thể tích khối chóp SABCD và khoảng cách từ điểm D đến mặt phẳng SBM, M là trung điểm CD.. Tính thể tích của tứ diện SBCD và khoảng cách từ điểm H đến mặt phẳng SCD.. Tính thể tích k
Trang 1Thời gian: 180 phút ( không kể thời gian phát đề)
Câu 1: ( 2 điểm) Cho hàm số y = x3 – 3mx2 + m ( 1)
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1
b) Tìm m để đồ thị hàm số đạt cực trị tại A, B sao cho diện tích tam giác OAB bằng 4 (O là gốc tọa độ)
Câu 3: (1 điểm)
a) Từ một hộp đựng 4 viên bi đỏ và 5 viên bi xanh, chọn ngẫu nhiên hai viên bi Tính xác suất để hai viên bi được chọn cùng màu
và mặt phẳng (P): x + 2y – 2z + 3 = 0 Viết phương trình đường thẳng d đi qua
A và vuông góc với (P) Tìm tọa độ điểm M thuộc đường thẳng d sao cho
3
Câu 5 ( 1 điểm) Cho hình chóp SABCD có đáy là hình vuông, SA vuông góc
với đáy, SA = a Góc giữa đường thẳng SD và mặt phẳng (SAC) bằng 300 Tính thể tích khối chóp SABCD và khoảng cách từ điểm D đến mặt phẳng (SBM), (M là trung điểm CD)
Câu 6 ( 1 điểm) Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có trực tâm H(3;0) và trung điểm của BC là I(6; 1) Đường thẳng AH có phương trình x + 2y – 3 = 0 Gọi D, E lần lượt là chân đường cao kẻ từ B và C của tam giác ABC Xác định tọa độ các đỉnh của tam giác ABC, biết phương trình đường thẳng DE là x - 2 = 0 và điểm D có tung độ dương
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm!
Họ và tên thí sinh: ; Số báo danh:
SỞ GD & ĐT THANH HÓA ĐỀ KIỂM TRA CHẤT LƯỢNG THPT QUỐC GIA TRƯỜNG THPT TĨNH GIA 1
MÔN TOÁN (Năm học 2015 – 2016)
Trang 2Hướng dẫn giải và thang điểm
Diện tích tam giác OAB: 2 4
Gọi A là biến cố lấy được hai viên bi cùng màu: A C42 C52 16
Xác suất của biến cố: P A = 16 4
log 2 3
y y' x
Trang 3H
N
M D
C B
S
A
5 CM: DB ( SAC ) hình chiếu vuông góc DS lên (SAC) là SO; Góc của SD và (SAC) là
030
DSO .Đặt DO =x Ta có SO=x 3 (O là giao của AC với BD)
0,25
0,25
6 Gọi K là trung điểm AH Tứ giác ADHE nội tiếp đường tròn tâm K
và BCDE nội tiếp đường tròn tâm I
Suy ra IK vuông góc DE => PT đường thẳng IK: y – 1=0
7 (1)DKx0; y1; 3x2y 4 0 Nhận thấy x= 0; y = 1 không là nghiệm của hệ
0,25
K
H
I B
A
C D
E
Trang 4SỞ GD – ĐT NGHỆ AN
TRƯỜNG THPT BẮC YÊN THÀNH
Câu 1 (2,0 điểm) Cho hàm số y x 4 2x21
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm cực đại của (C).
Câu 3 (0,5 điểm) Giải phương trình: log x log 44 2 x 5
Câu 4 (1,0 điểm) Giải phương trình: x3 6x2 171x40x1 5 x 1 20 0, x
Câu 5 (1,0 điểm) Tính tích phân:
3 1
1lnxd
BAD , cạnh SA a 2 và SA vuông góc với đáy, tam giác SCD vuông tại C Gọi H là hình
chiếu của A lên SB Tính thể tích của tứ diện SBCD và khoảng cách từ điểm H đến mặt phẳng (SCD).
Câu 7 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A Gọi M
là điểm trên cạnh AC sao cho AB3AM Đường tròn tâm I1; 1 đường kính CM cắt BM tại
3
phươngtrình đường thẳng CD x: 3y và điểm C có hoành độ lớn hơn 2.6 0
Câu 8 (1,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm M(2; 1; 2) và đường thẳng
Câu 9 (0,5 điểm) Lập số tự nhiên có 5 chữ số khác nhau từ các chữ số {0; 1; 2; 3; 4; 5; 6; 7}.
Tính xác suất để lập được số tự nhiên chia hết cho 5
Câu 10 (1,0 điểm) Cho 3 số thực a, b, c không âm, chứng minh rằng:
-Họ và tên thí sinh: Số báo danh:
Ghi chú: Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm.
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian giao đề
Trang 5SỞ GD – ĐT NGHỆ AN
ĐÁP ÁN – THANG ĐIỂM Môn: TOÁN
Dấu của y’: y' 0 x 1;0 1; ; ' 0y x ; 1 0;1
hàm số ĐB trên mỗi khoảng 1;0 và 1; NB trên mỗi khoảng ; 1và (0 ; 1)
Hàm số có hai CT tại x = 1; yCT= y(1) = 0 và có một CĐ tại x = 0 ; yCĐ= y(0) = 1
Điểm cực đại (0; 1), hệ số góc của tiếp tuyến tại điểm CĐ của đồ thị đã cho là y’(0) = 0 0,5
Trang 63 2
3 3
Suy ra: Hàm số f t t3 3t đồng biến trên khoảng (1; + )
Với điều kiện 1 2 1
5 2 5 1 3 1
x x
x lnxd
e
1 ln
Trang 72; B,
22
S BCD SCD
Kéo dài AB và CD cắt nhau tại E Kéo dài AH cắt SE tại M.
Có (AMK) (SCD) hay (AMK) (SED).
AH (SBC) AH HK tam giác AHK vuông tại H.
Kẻ HJ MK có HJ = d(H, (SCD)).
Tính AH, AM HM; Tính AK HK Từ đó tính được HJ = a/3.
Hoặc có thể bằng phương pháp tọa độ.
Trang 8I là trung điểm của CM M phương trình đường tròn tâm I là1; 1 2 2
Phương trình đường thẳng AB đi qua B và vuông góc với AC AB x: A là giao điểm của2 0
Gọi A là biến cố lập được số tự nhiên chia hết cho 5, có 5 chữ số khác nhau.
Số các số tự nhiên chia hết cho 5 có 5 chữ số khác nhau: 4 3
Trang 9Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu 1: (2,0 điểm) Cho hàm số y2x36x2
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Tìm m để đồ thị (C) cắt đường thẳng d y mx: tại ba điểm phân biệt
Câu 2: (1,0 điểm) Giải phương trình: sinxsinx 1 cos 1 cosx x
Câu 3: (2,0 điểm) Tính các tích phân:
1 Giải phương trình: log 2 4x log2 x 2 10
2 Tìm số hạng không chứa x trong khai triển nhị thức Niutơn của biểu thức: 2 2 15
Câu 6: (1,0 điểm) Cho hình chóp S.ABCD có ABCD là hình chữ nhật, AC = 2a Biết rằng ∆SAB đều
cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD) Tính thể tích khối chóp S.ABCD và tính độ dài đoạn thẳng MN với M, N lần lượt là trung điểm của SA và BC.
Câu 7: (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn C x: 2y22x4y và1 0
đường thẳng d: x + y – 3 = 0 Tìm trên d điểm M sao cho từ M có thể kẻ được hai tiếp tuyến đến đường tròn (C) là MA, MB (A, B là hai tiếp điểm) sao cho SMAB 3SIAB , với I là tâm của đường tròn (C).
-Hết -NĂM HỌC 2015 – 2016; Môn: TOÁN
Trang 10HƯỚNG DẪN CHẤM
Lưu ý: Bài thi được chấm theo thang điểm 10, lấy đến 0,25; không quy tròn điểm.
2
x y
0,5
Trang 11Với t = 2 ta được log2x 2 2 log2x 2 x 4
Vậy phương trình có nghiệm x = 4
Gọi I là tâm của mặt cầu (S) Theo giả thiết I thuộc trục Oy nên I(0;a;0).
Trang 12Với a = 3 ta có I(0;3;0) nên 2 2 2
S x y z Với a = – 1 ta có I(0; – 1;0) nên 2 2 2
a
Do AB a AD a 3 Khi đó S ABCD AB AD a 2 3 Vậy
3
1
a
Gọi P là trung điểm của cạnh AH Do đó MP // SH hay MP (ABCD)
Dễ thấy ∆MPN vuông tại P
Đường tròn (C) có tâm I(1;– 2), bán kính R = 2
Ta thấy tứ giác MAIB có góc A và B vuông nên hai góc M và I bù nhau
Theo công thức diện tích , từ SMAB 3SIAB ta được MA2 3R2 MI 4
Gọi điểm M(a;3 – a) Do MI nên4 1
5
a a
0,250,25
Trang 13
-Hết -SỞ GD&ĐT BẮC GIANG
TRƯỜNG THPT NGÔ SĨ LIÊN
ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2
Giải các phương trình sau:
a) 2sin cosx x+6sinxcosx 3 0;
d x y và A(4; 8) Gọi E là điểm đối xứng với B qua C, F(5; 4) là hình chiếu vuông góc
của B trên đường thẳng ED Tìm tọa độ điểm C và tính diện tích hình chữ nhật ABCD
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh: Số báo danh:
Trang 14HƯỚNG DẪN CHẤM ĐỀ THI THỬ KỲ THI THPT QUỐC GIA MÔN TOÁN 12 lần 2
Hàm số nghịch biến trên (∞; 1) và (1; + ∞) Hàm số không có cực trị
Vẽ đồ thị đúng hình dạng và các điểm căn cứ, nhận xét đồ thị
0,25
0,25
0,25 0,25
2
x ¡ ta có y' x( )4x32mx = x x2 (2 2m),
(Cm ) có ba điểm cực trị khi y’(x) = 0 có ba nghiệm phân biệt, tức là
2 (2x x2m)0có ba nghiệm phân biệt
0,25 0,25
3
1log 50 log 50 log 50
4
a) TXĐ D = ¡
Phương trình đã cho (2sinx1)(cosx+3)0
0,5 0,25
Trang 152cos 3(v« nghiÖm)
656
Số hạng chứa x4 trong khai triển trên thỏa mãn 3k – 5 = 4 k = 3, suy ra số hạng
chứa x4 trong khai triển trên là 40x4
0,25 0,25 0,25 0,25
0,25
Trang 16Từ hai kết quả trên BI (SAC) BI = d(B; (SAC))
Dựa vào tam giác vuông ABH tính được BI 6 7
7
BI a Kl
0,25 0,25
7
Ta có Cd: 2x y 5 0 nên C(t; –2t – 5)
Ta chứng minh 5 điểm A, B, C, D, F cùng nằm trên đường tròn đường kính BD Do tứ
giác ABCD là hình chữ nhật thì AC cũng là đường kính của đường tròn trên, nên suy ra
được ·AFC900AC2 AF2CF2 Kết hợp với gt ta có phương trình:
(t4) ( 2t 13) 81 144 ( t 5) ( 2t 1) t 1
Từ đó ta được C(1; –7)
Từ giả thiết ta có AC // EF, BF ED nên BF AC, do C là trung điểm BE nên BF
cắt và vuông góc với AC tại trung điểm.
Suy ra F đối xứng với B qua AC, suy ra ∆ABC = ∆AFC
S ABC S AFCS ABCD S AFC (đvdt)
0,25 0,25 0,25 0,25
Trang 17f’(t)
0
0,25
0,25
Trang 18SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH
TRƯỜNG THPT XUÂN TRƯỜNG
ĐỀ CHÍNH THỨC
ĐỀ THI THỬ THPTQG- LẦN 1 NĂM HỌC: 2015-2016 Môn: TOÁN
Thời gian làm bài: 150 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị của hàm số yx4 2x23
b) Giải phương trình: cos xsin 4xcos3x0
Câu 3 (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 2
Câu 4 (1,0 điểm) Giải phương trình 2.4x 6x 9 x
Câu 5 (1,0 điểm) Trong đợt thi học sinh giỏi của tỉnh Nam Định trường THPT Xuân Trường
môn Toán có 5 em đạt giải trong đó có 4 nam và 1 nữ, môn Văn có 5 em đạt giải trong đó có 1 nam và 4 nữ, môn Hóa học có 5 em đạt giải trong đó có 2 nam và 3 nữ, môn Vật lí có 5 em đạt giải trong đó có 3 nam và 2 nữ Hỏi có bao nhiêu cách chọn mỗi môn một em học sinh để đi dự đại hội thi đua? Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?
Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và
nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0
30 Tính theo a thể tích khối chóp S.ABCD và
khoảng cách từ điểm B đến mặt phẳng (SAC)
Câu 7 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Gọi M là điểm
đối xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội tiếp đường tròn (T) có phương trình: 2 2
(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170; đường thẳng BC đi qua điểm E(7;0)
và điểm M có tung độ âm
Câu 8 (1,0 điểm) Giải hệ phương trình:
Trang 19Hä và tªn thÝ sinh:
; SBD
HƯỚNG DẪN CHẤM THI THỬ THPTQG LẦN I Câu Nội dung Điểm Câu 1 (1,0 điểm) a) (1,0 điểm) 1) Tập xác định : DR 2) Sự biến thiên: a, Giới hạn : y xlim ; y xlim 0,25 b, Bảng biến thiên: y’ = 4x34x , y’ = 0 x = 0, x1 x - - 1 0 1 +
y' - 0 + 0 - 0 +
y + - 3 +
- 4 - 4
0,25
Hàm số đồng biến trên mỗi khoảng (- 1; 0) và (1;), hàm số nghịch biến trên mỗi
khoảng (;1) và (0; 1)
Hàm số đạt cực đại tại x = 0, yCĐ = y(0) = - 3
Hàm số đạt cực tiểu tại x = 1, yCT = y(1) = - 4
0,25
3) Đồ thị: Đồ thị (C) của hàm số nhận Oy làm trục đối xứng, giao với Ox tại 2 điểm
( 3; 0)
0,25
Câu 2.1
(1,0 điểm)
Cho tan α2và π α 3π
2
Tính sin α 2π
3
Ta có
2
2
Do π α 3π cosα 0
2
nên cosα 5
5
sin α cosα.tan α 2
1 1
3
y
x
O
4
3 3
Trang 20Giải phương trình: cos x sin 4x cos3x 0
cos x sin 4x cos3x 0 2sin 2x.sin x2sin 2x.cos 2x0 0,25
22sin 2x(s inx cos2x) 0 sin 2x( 2sin x sin x 1) 0
kπx2π
Trang 21C H
A
B
D S
I K
2 3log 2
x
Vậy phương trình có nghiệm 2
3log 2
Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và nằm
trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo
bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0
30 Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAC)
Gọi H là trung điểm của AB Suy ra
Vì BA2HA nên d B SAC , 2d H SAC ,
Gọi I là hình chiếu của H lên AC và K là hình chiếu của H lên SI Ta có:
ACHI và ACSH nên ACSHIACHK Mà, ta lại có: HKSI
Do đó: HK SAC
0,25
Trang 22Vì hai tam giác SIA và SBC đồng dạng nên . 6
6611
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD.Gọi M là điểm đối
xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội
tiếp đường tròn (T) có phương trình: 2 2
(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170;
đường thẳng BC đi qua điểm E(7;0) và điểm M có tung độ âm
Câu 7
(1,0 điểm)
I
M C
0,25
+ Lập ptđt IM qua I và IM CN : 4(x-4)+3(y-1)=0 4x+3y-19=0
+ M là giao điểm (T) với IM : M(7; 3)
Vì B,D nằm cùng phía với CN nên D(-1 ;1)
+Do BAuuur CDuuur => A(-1 ;5)
* Nếu không loại mà lấy cả 2 điểm D chỉ cho 0,75đ
Trang 25SỞ GD& ĐT VĨNH PHÚC
TRƯỜNG THPT YÊN LẠC ĐỀ KHẢO SÁT CHẤT LƯỢNG LẦN 2 - LỚP 12 NĂM HỌC 2015-2016
ĐỀ THI MÔN : TOÁN Thời gian làm bài 150 phút, không kể thời gian giao đề
Câu 1 (2,0 điểm): Cho hàm số 2
x có đồ thị kí hiệu là ( )C
a) Khảo sát và vẽ đồ thị ( )C của hàm số đã cho
b) Tìm m để đường thẳng y x m cắt đồ thị ( )C tại hai điểm phân biệt A, B sao cho AB2 2
b) Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham gia biểu diễn, tìm
xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số bạn nam nhiều hơn số bạn nữ
Câu 4 (1,0 điểm): Tìm giá trị nhỏ nhất của hàm số yx.logx trên khoảng (0;10)
Câu 5 (1,0 điểm): Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng : y 2 0 và các điểm (0;6), (4; 4)
A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C trên đường thẳng
sao cho tam giác ABC vuông tại B
Câu 6 (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu
vuông góc của S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và mặt
I , tâm đường tròn nội tiếp là (1;0)J Đường phân giác trong góc BAC· và đường phân giác
ngoài góc ·ABC cắt nhau tại K(2; 8) Tìm tọa độ các đỉnh của tam giác ABC biết đỉnh B có hoành độ
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh:……….……….…….….….; Số báo danh:………
Trang 26- Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làm của thí
sinh Khi chấm nếu thí sinh bỏ qua bước nào thì không cho điểm bước đó
- Nếu thí sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm
- Thí sinh được sử dụng kết quả phần trước để làm phần sau
- Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó
không được điểm
- Trong lời giải câu 6 và câu 7 nếu thí sinh không vẽ hình thì không cho điểm
- Điểm toàn bài tính đến 0,25 và không làm tròn
Trang 27b Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham
gia biểu diễn, tìm xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số
bạn nam nhiều hơn số bạn nữ
Trang 284 Tìm giá trị nhỏ nhất của hàm số f x( )x.logx trên khoảng (0;10] 1.0
Hàm số đã cho liên tục trên (0;10] Ta có '( ) log 1 log log
A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C
trên đường thẳng sao cho tam giác ABC vuông tại B
Tam giác ABC vuông tại B nên uuur uuurBA BC 0 4t 16 4 0 t 3 C(3; 2) 0.25
6 Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu của
S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và
mặt phẳng (ABCD) bằng 30 Tính theo a thể tích khối chóp S.ABCD và cosin của 0
góc giữa đường thẳng AC và mặt phẳng (SAB)
1.0
Trang 29Trang 4/6
O G
Gọi M là trung điểm BC, O là giao điểm của AC và BD Ta có
5
AM AB BM a AG AM Vì SG vuông góc với mặt đáy,
nên góc giữa SA và mặt đáy là · 0
Hạ GI vuông góc với AB, I thuộc AB Nối S với I, hạ GK vuông góc với SI, K thuộc
SI Khi đó K là hình chiếu vuông góc của G trên (SAB) Ta có 2 2
AH là hình chiếu của AO lên (SAB) suy ra góc giữa AC và (SAB) là OAH· Xét tam
Trang 30HJB JAB JBA (góc ngoài tam giác JAB)
·JAC·JBC ( vì AJ, BJ là các đường phân giác)
CBH· ·JBC (nội tiếp cùng chắn cung CH¼ của đường tròn (I))
HBJ·
Suy ra tam giác HJB cân tại H, vậy HJ=HB và ·HJB·HBJ (1)
0.25
Lại có BJ, BK thứ tự là phân giác trong và phân giác ngoài góc ·ABC nên tam giác
x y Gọi d là đường thẳng qua I và vuông góc với AH, d
có véc tơ pháp tuyến rn 2uuurHJ 1; 8 , phương trình đường thẳng d là:
Trang 319 Cho các số thực dương x, y thỏa mãn điều kiện: xy 1 y Tìm giá trị lớn nhất của
Trang 32Trường THPT Bố Hạ
NĂM HỌC 2015-2016 MÔN: TOÁN, LỚP 12
Thời gian làm bài: 150 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thi hàm số 2 1
x
Câu 2 (1,0 điểm) Cho hàm số 3 2
yx x x có đồ thị (C) Viết phương trình tiếp tuyến của
đồ thị (C) tại giao điểm của (C) với trục tung
Câu 3 (1,0 điểm) Cho hàm số 3 2
Câu 8 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có tâm I(1;3)
Gọi N là điểm thuộc cạnh AB sao cho 2
3
AN AB Biết đường thẳng DN có phương trình
x+y-2=0 và AB=3AD Tìm tọa độ điểm B
Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh Số báo danh
Trang 33ĐÁP ÁN ĐỀ THI THỬ KỲ THI QUỐC GIA THPT NĂM HỌC 2015-2016 LẦN 2
Thời gian làm bài: 150 phút, không kể thời gian giao đề
'3 6 3
đ '(0) 3
đ Phương trỡnh tiếp tuyến của (C) tại điểm A(0;-2) là yy'(0)(x 0) 3 3x 2 0,25
(2sinx1)( 3 sinx2cosx 2)sin 2xcosx(1)
(1)(2sinx1)( 3 sinx2cosx 2)cos (2sinx x1)
(2sin 1)( 3 sin cos 2) 0
Trang 34Hệ số của x8 trong khai triển trên ứng với 20 3 k 8 k 4
Vậy hệ số của x8 trong khai triển P(x) là 4 4 16
Gọi hình chiếu của S trên AB là H
Ta có SHAB SAB, ( )(ABCD) AB SAB, ( )(ABCD)SH(ABCD)
Kẻ Ax//BD nên BD//(SAx) mà SA(SAx)
(BD,SA) (BD, (SAx)) (B, (SAx)) 2 (H, (SAx))
0,25
đ
Trang 35Gọi I, K lần lượt là hình chiếu của H trên Ax và SI
Chứng minh được HK(SAx)
x
x x
Trang 37SỞ GD&ĐT NGHỆ AN
TRƯỜNG THPT THANH CHƯƠNG III
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn: TOÁN
Thời gian làm bài: 180 phút ,không kể thời gian giao đề
Câu 1 (2,0 điểm) Cho hàm số y x3 3mx1 (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1
b) Tìm m để đồ thị của hàm số (1) có 2 điểm cực trị A, B sao cho tam giác OAB vuông tại O
(với O là gốc tọa độ )
Câu 2 (1,0 điểm) Giải phương trình sin 2x 1 6sinxcos 2x
Câu 3 (1,0 điểm) Tính tích phân
2 3 2 1
trực nhật Tính xác suất để 3 học sinh được chọn có cả nam và nữ
Câu 5 (1,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm A4;1;3và đường thẳng
BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60o Tính thể tích khối chóp S ABC và tính
khoảng cách từ điểm I đến mặt phẳng SAB theo a
Câu 7 (1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC cóA 1; 4 , tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt BC tại D, đường phân giác trong của ·ADB có phương trình x y 2 0, điểm M 4;1 thuộc cạnh AC Viết phương trình đường thẳng AB
Câu 8 (1,0 điểm) Giải hệ phương trình
2 2
Trang 38Hàm số nghịch biến trên các khoảng ; 1 và 1;, đồng biến trên khoảng 1;1
Hàm số đạt cực đại tại x1, y CD 3, đạt cực tiểu tại x 1, y CT 1
Trang 392 (1,0 điểm)
sin 2x 1 6sinxcos 2x
2sinx cosx 3 2sin x0
2sinxcosx 3 sinx0
Trang 405 (1,0 điểm)
Đường thẳng d có VTCP là uuurd 2;1;3
Vì P dnên P nhận uuurd 2;1;3 làm VTPT 0.25 Vậy PT mặt phẳng P là : 2x 4 1 y 1 3 z 3 0
Gọi K là trung điểm của AB HKAB(1)
Vì IH/ /SB nên IH/ /SAB Do đó d I SAB , d H SAB ,
Từ H kẻ HM SK tại M HMSAB d H SAB , HM 0.25