1. Trang chủ
  2. » Giáo Dục - Đào Tạo

30 bộ đề thi thử thpt quốc gia môn toán 2016

169 317 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 169
Dung lượng 22,9 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng ABC , gọi M là điểm thuộc cạnh SC sao cho MC= 2 MS

Trang 1

D ( 2; 4 -  ) là giao điểm thứ hai của  AJ với đường tròn ngoại tiếp tam giác  ABC. Tìm tọa độ các 

đỉnh tam giác  ABC  biết  B  có hoành độ âm  và  B thuộc đường thẳng có phương trình x+y + =  7

Trang 2

­ Cực trị: Hàm số đạt cực đại tại x = 0, y CĐ = 2; đạt cực tiểu tại x = 2, y CT  =­2. 

­ Giới hạn:  lim , lim 

Trang 4

5 (1,0 đ)  b) Một hộp chứa 20 quả cầu giống nhau gồm  12  quả đỏ và  8  quả xanh. Lấy ngẫu 

nhiên 3 quả. Tính  xác  suất  để  trong  3  quả  cầu  chọn  ra  có  ít  nhất  một quả  cầu màu 

Câu 6 . Trong mặt phẳng  với  hệ tọa độ ( Oxy  , cho hình bình hành  ABCD  có hai 

đỉnh A - - ( 2; 1 ) , ( 5; 0 ) và  có tâm ( ) 2;1    Hãy  xác  định tọa  độ hai đỉnh  ,  B C và 

Câu 7 . Cho hình chóp  S.ABC  có đáy  ABC  là tam giác vuông tại  A , mặt bên  SAB 

là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng ( ABC  , gọi  M 

là điểm thuộc cạnh  SC  sao cho  MC2  MS . Biết  AB= 3,BC 3 3 , tính thể tích 

của khối chóp  S.ABC  và khoảng cách giữa hai đường thẳng  AC  và  BM . 

1,0 

Gọi  H là trung điểm  ABÞSHAB ( do 

SAB

D  đều). 

Do ( SAB) ( ^ ABC) ÞSH^ ( ABC

Do  ABC D  đều  cạnh bằng  3 

Trang 5

Câu 8. Trong mặt phẳng với hệ tọa độ ( Oxy  , cho tam giác  ABC  ngoại tiếp đường 

tròn  tâm ( ) 2;1   Biết đường cao xuất phát từ đỉnh  A  của tam giác  ABC  có phương 

1; 2 

AH 

qua B  qua B 

B  A

Trang 6

­ Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó không được điểm. 

­ Học sinh được sử dụng kết quả phần trước để làm phần sau.

Trang 7

­ Trong lời giải câu 7 nếu học sinh không vẽ hình thì không cho điểm. 

­ Điểm toàn bài tính đến 0,25 và không làm tròn. 

Trang 8

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂKNÔNG KỲ THI THỬ THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT ĐĂKMIL Môn thi: TOÁN

Thời gian làm bài: 180 phút, không kể thời gian giao đề

Lần thứ 1, Ngày thi: 1/12/2015

Câu 1.(2,0 điểm) Cho hàm số yx33x2

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng

.5

b)Cho số phức z thỏa mãn z2 3 i z  1 9i Tìm môđun của số phức z

Câu 3.(0,5 điểm) Giải bất phương trình: 32 ( 1 ) 82.3 9 0

sinh lớp B và 3 học sinh lớp C Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ Tính xác suất để trong

4 học sinh được chọn không quá 2 trong 3 lớp trên

Câu 5.(1,0 điểm) Tính tích phân: 1 2 2

0

I xxx dx Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a,

cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 600 Gọi M, N lần lượt là trung điểm của các cạnh bên SA và SB Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ S đến mặt phẳng (DMN)

Câu 7.(1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;3;1) và đường thẳng d:

.21

21

t y

t x

Viết phương trình mặt phẳng đi qua A và chứa đường thẳng d Viết phương trình

mặt cầu tâm A và tiếp xúc với d

Câu 8: Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có AB=2BC Gọi H là hình chiếu của A lên đường thẳng BD; E,F lần lượt là trung điểm đoạn CD và BH Biết A(1;1), phương trình đường thẳng EF là 3x – y – 10 = 0 và điểm E có tung độ âm Tìm tọa độ các đỉnh B, C, D

Câu 9 (1,0 điểm) Giải hệ phương trình sau:

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh: Số báo danh: Chữ ký của giám thị 1: Chữ ký của giám thị 2:

ĐỀ CHÍNH THỨC

Trang 9

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂKNÔNG KỲ THI THỬ THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT ĐĂKMIL

Thời gian làm bài: 180 phút, không kể thời gian giao đề

Các khoảng nghịch biến: (-;0) và (2;+); khoảng đồng biến: (0;2)

Cực trị: Hàm số đạt cực tiểu tại x = 0, y CT = 0; đạt cực đại tại x = 2, y CĐ = 4

Giới hạn tại vô cực:    

x y

0,25

Tiếp tuyến song song với đường thẳng y  x3  5 nên có hệ số góc bằng 3 0,25 Gọi M(x 0 ;y 0 ) là tiếp điểm, ta có 3 6 3 3 2 6 0 3 0 0 1

0 0

3

(0,5đ)

2 2 3 3 3 9 3 9

Trang 10

495 )

+ 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C có C52.C14.C31 120 cách

+ 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C có C51.C42.C13 90 cách

+ 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C có C51.C14.C32 60 cách

270 ) ( 

n A

11

6 ) (

) ( )

Vậy xác suất của biến cố A là:

11

5 ) ( 1 ) (A  P A

0

1 1

2 1 0 2 2 2 1 0 2 1

1 2 2

1

| 2

e e e dx e e

x dx

15 2 3

1 3

.

a SA

AD AB SA S

0,25

6

(1,0đ)

Trong mp(SAD) kẻ SH  DM, ta có AB  (SAD) mà MN // AB  MN  (SAD)  MN  SH  0,25

Ta có SA  (ABCD)  AC là hình chiếu của SC trên (ABCD)   600

SCA

15 60

Trang 11

SH  (DMN)  SH = d(S, (DMN))

SHM ~ DAM

31

15 2 2

2

.

2 2

a AM AD

DA SA DM

DA SA SH DM

SM DA

Đường thẳng d đi qua M(-2;1;-1) và có vectơ chỉ phương a ( 1 ; 2 ;  2 ) , MA ( 4 ; 2 ; 2 )

mp(P) đi qua A và chứa d nhận na,MA ( 8 ;  10 ;  6 ) làm vectơ pháp tuyến

0,25

(P): 4x – 5y – 3z + 10 = 0

0,25 Gọi H là hình chiếu của A trên d  H(-2 + t; 1 + 2t; -1 – 2t),

10

; 9

32 9

4 0

);

2 2

; 2 2

; 4

9

200 5

Theo giả thiết ta được E3; 1 , pt AE: x+y-2=0 Gọi D(x;y), tam giác ADE

vuông cân tại D nên

H

Trang 12

Khi đó, C(5;-1); B(1;5) Vậy B(1;5); C(5;-1) và D(1;-1).

3

x y

4 13 4

x y

Trang 13

1 1

0 1

Trang 14

TRƯỜNG THPT CHUYÊN VÕ NGUYÊN GIÁP

b) Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của (C) với đường thẳngy   1.

Câu 2 (1,0 điểm)

f(x) sin x4 cos x cos x4 sin x, chứng minh: f '(x)  0, x   

b) Tìm môđun của số phức 25i

Câu 3 (0,5 điểm) Giải phương trình: 42x1 5.4x   1 0.

Câu 4 (1,0 điểm) Giải bất phương trình: 3 2 9

Câu 6 (1,0 điểm).Cho hình chóp S.ABCD có đáy là hình thang cân (BC//AD) Biết đường cao

SHa,với H là trung điểm của AD,ABBCCDa AD, 2a Tính thể tích khối chóp S.ABCD

và khoảng cách giữa hai đường thẳng SB và AD theo a

Câu 7 (1,0 điểm).Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Gọi H là hình

chiếu vuông góc của B lên AC, M và N lần lượt là trung điểm của AH và BH, trên cạnh CD lấy K sao cho MNCK là hình bình hành Biết M 9 2;

5 5

 ,K(9; 2) và các đỉnh B, C lần lượt nằm trên các đường thẳng 2xy20 và xy 5 0, hoành độ đỉnh C lớn hơn 4.Tìm tọa độ các đỉnh của hình chữ nhật ABCD

Câu 8 (1,0 điểm).Trong không gian với hệ toạ độ Oxyz, cho hai điểm M(1; 2;3), N( 1; 0;1) và mặt phẳng ( ) :P xy  z 4 0 Viết phương trình mặt cầu (S) có bán kính bằng

6

MN

, tâm nằm trên đường thẳng MN và (S ) tiếp xúc với (P)

Câu 9 (0,5 điểm).Trong kì thi TN THPT, Bình làm đề thi trắc nghiệm môn Hóa học Đề thi gồm

50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm Bình trả lời hết các câu hỏi và chắc chắn đúng 45 câu; 5 câu còn lại Bình chọn ngẩu nhiên Tính xác suất để điểm thi môn Hóa học của Bình không dưới 9,5 điểm

Câu 10 (1,0 điểm) Cho các số thực dương a,b thỏa mãn: 4 4 1

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh:……… Số báo danh………

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016

LẦN THỨ NHẤT Môn TOÁN Thời gian làm bài: 180phút, không kể phát đề

Trang 15

1

x o

y

-1

-1 -3

-7 3

1

ĐÁP ÁN - THANG ĐIỂM

TXĐ: D  

Giới hạn: lim , lim

     

Đồ thị không có tiệm cận

2

' x 4x+3,

3

x y

x

 

    

0,25

Bảng biên thiên:

X - -3 -1 +

y’ + 0 - 0 +

y 

-1

 7

3  0,25 Hàm số đồng biến trên các khoảng  ; 3và  1; , nghịch biến trên khoảng  3; 1 Hàm số đạt cực tiểu tại x= 1 và f( 1 )= 7 3  ; hàm số đạt cực đại tại x=-3 và f(-3)=-1 0,25 Câu1a (1.0đ) Đồ thị: 0,25 Câu1b ĐỀ THI THỬ THPT QUỐC GIA

Môn: TOÁN;

(ĐÁP ÁN GỒM 6 TRANG)

Trang 16

Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 0 là y=3x-1 0,25

Trang 17

0 x

Trang 18

4

K

N M

73

4

a a

Trang 19

Vì K(9; 2) là trung điểm CD và C(9 ;4) suy ra D(9 ;0)

Gọi I là trung điểm BD thì I(5 ;2) và I là trung điểm AC nên A(1 ;0) 0,25

  

 0,25

Trang 20

abab tab

0,25

Trang 21

“ Ngày mai đang bắt đầu từ ngày hôm nay……… ” 1

-Đề thi môn: Toán

(Thời gian làm bài: 180 phút, không kể thời gian phát đề)

Câu 1 (2,0 điểm) Cho hàm số y 2x 1

x 2

-=-a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

b) Tìm m để đường thẳng (d) : y = x+ m cắt (C) tại hai điểm phân biệt A, B sao cho AB= 4 2

Câu 2 (1,0 điểm)

a) Giải phương trình: 2 x

16sin cos2x 15

b) Cho số phức z thỏa mãn phương trình (1 i)z- + (2+ i).z= 4+ i Tính môđun của z

Câu 3 (0,5 điểm) Giải phương trình: 2

Câu 5 (1,0 điểm) Tính tích phân:

4

2 1

= đáy ABC là tam giác vuông tại

A, AB = 2a, AC= a và hình chiếu của S lên mặt phẳng (ABC) là trung điểm cạnh AB Tính theo athể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng BC và SA

Câu 7 (1,0 điểm) Trong mặt phẳng Oxy, gọi H(3; 2), I(8;11), K(4; 1)- - lần lượt là trực tâm, tâm đườngtròn ngoại tiếp, chân đường cao vẽ từ A của tam giác ABC Tìm tọa độ các điểm A, B,C

Câu 8 (1,0 điểm) Trong không gian Oxyz, cho 3 điểm A(2;1; 1), B(1; 3;1),C(1;2; 0).- Viết phương trìnhđường thẳng (d) qua A, vuông góc và cắt đường thẳng BC

Câu 10 (0,5 điểm) Gọi X là tập hợp các số tự nhiên gồm năm chữ số đôi một khác nhau được tạo thành từ

các số 1,2, 3, 4, 5, 6, 7, 8, 9 Chọn ngẫu nhiên một số từ tập hợp X Tính xác suất để số được chọn có tổngcác chữ số là một số lẻ

Câu 9 (1,0 điểm) Cho hai số thực x , y thỏa mãn điều kiện: x4+ 16y4+ 2(2xy- 5)2 = 41

Trang 22

y    x D Hàm số giảm trên các khoảng (, 2), (2;)

Vẽ đồ thị Đồ thị nhận I(2;2) làm tâm đối xứng

b) Phương trình hoành độ giao điểm của (C) và (d) là:

2

2 1

( 4) 1 2 0 (*)2

0,25

0,25

0,25 0,25

0,25 0,25

Trang 23

1 1

D H

K I

J

Trang 24

x t y z

0,25 0,25

Trang 25

SỞ GD&ĐT BẮC GIANG

TRƯỜNG THPT NGÔ SĨ LIÊN

ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2

Giải các phương trình sau:

a) 2sin cosx x+6sinxcosx 3 0;

d x y và A(4; 8) Gọi E là điểm đối xứng với B qua C, F(5; 4) là hình chiếu vuông góc

của B trên đường thẳng ED Tìm tọa độ điểm C và tính diện tích hình chữ nhật ABCD

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh: Số báo danh:

Trang 26

HƯỚNG DẪN CHẤM ĐỀ THI THỬ KỲ THI THPT QUỐC GIA MÔN TOÁN 12 lần 2

Hàm số nghịch biến trên (∞; 1) và (1; + ∞) Hàm số không có cực trị

Vẽ đồ thị đúng hình dạng và các điểm căn cứ, nhận xét đồ thị

0,25

0,25

0,25 0,25

2

 x ¡ ta có y' x( )4x32mx = x x2 (2 2m),

(Cm ) có ba điểm cực trị khi y’(x) = 0 có ba nghiệm phân biệt, tức là

2 (2x x2m)0có ba nghiệm phân biệt

0,25 0,25

3

1log 50 log 50 log 50

2

150log 50 log log 15 log 10 1 1

3

Kết luận

0,25 0,5 0,25

4

a) TXĐ D = ¡

Phương trình đã cho  (2sinx1)(cosx+3)0

0,5 0,25

Trang 27

2cos 3(v« nghiÖm)

656

Số hạng chứa x4 trong khai triển trên thỏa mãn 3k – 5 = 4 k = 3, suy ra số hạng

chứa x4 trong khai triển trên là 40x4

0,25 0,25 0,25 0,25

0,25

Trang 28

Từ hai kết quả trên  BI (SAC) BI = d(B; (SAC))

Dựa vào tam giác vuông ABH tính được BI 6 7

7

0,25 0,25

7

Ta có Cd: 2x  y 5 0 nên C(t; –2t – 5)

Ta chứng minh 5 điểm A, B, C, D, F cùng nằm trên đường tròn đường kính BD Do tứ

giác ABCD là hình chữ nhật thì AC cũng là đường kính của đường tròn trên, nên suy ra

được ·AFC900AC2 AF2CF2 Kết hợp với gt ta có phương trình:

Từ đó ta được C(1; –7)

Từ giả thiết ta có AC // EF, BF ED nên BF AC, do C là trung điểm BE nên BF

cắt và vuông góc với AC tại trung điểm.

Suy ra F đối xứng với B qua AC, suy ra ∆ABC = ∆AFC

S ABCS AFCS ABCDS AFC  (đvdt)

0,25 0,25 0,25 0,25

Trang 29

0,25

0,25

Trang 30

SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH

TRƯỜNG THPT XUÂN TRƯỜNG

ĐỀ CHÍNH THỨC

ĐỀ THI THỬ THPTQG- LẦN 1 NĂM HỌC: 2015-2016 Môn: TOÁN

Thời gian làm bài: 150 phút, không kể thời gian phát đề

Câu 1 (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị của hàm số yx4 2x23

b) Giải phương trình: cos xsin 4xcos3x0

Câu 3 (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số   2

Câu 4 (1,0 điểm) Giải phương trình 2.4x 6x 9 x

Câu 5 (1,0 điểm) Trong đợt thi học sinh giỏi của tỉnh Nam Định trường THPT Xuân Trường

môn Toán có 5 em đạt giải trong đó có 4 nam và 1 nữ, môn Văn có 5 em đạt giải trong đó có 1 nam và 4 nữ, môn Hóa học có 5 em đạt giải trong đó có 2 nam và 3 nữ, môn Vật lí có 5 em đạt giải trong đó có 3 nam và 2 nữ Hỏi có bao nhiêu cách chọn mỗi môn một em học sinh để đi dự đại hội thi đua? Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?

Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và

nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0

30 Tính theo a thể tích khối chóp S.ABCD và

khoảng cách từ điểm B đến mặt phẳng (SAC)

Câu 7 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Gọi M là điểm

đối xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội tiếp đường tròn (T) có phương trình: 2 2

(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170; đường thẳng BC đi qua điểm E(7;0)

và điểm M có tung độ âm

Câu 8 (1,0 điểm) Giải hệ phương trình:   

Trang 31

Hä và tªn thÝ sinh:

; SBD

Trang 32

Giải phương trình: cos x sin 4x cos3x  0

cos x sin 4x cos3x   0 2sin 2x.sin x2sin 2x.cos 2x0 0,25

2

2sin 2x(s inx cos2x) 0 sin 2x( 2sin x sin x 1) 0

kπx2π

Loai

0,25

Trang 33

C H

A

B

D S

I K

2 3

Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?

Có tất cả 5.5.5.5=625 cách n(Ω)625 0,25 Gọi A là biến cố “có cả HS nam và nữ đi dự đại hội”

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và nằm

trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo

bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0

30 Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAC)

Gọi H là trung điểm của AB Suy ra

3

BA2HA nên d B SAC ,  2d H SAC ,  

Gọi I là hình chiếu của H lên AC và K là hình chiếu của H lên SI Ta có:

ACHIACSH nên ACSHIACHK Mà, ta lại có: HKSI

Do đó: HK SAC

0,25

Trang 34

Vì hai tam giác SIA và SBC đồng dạng nên . 6

HS HI

6611

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD.Gọi M là điểm đối

xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội

tiếp đường tròn (T) có phương trình: 2 2

(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170;

đường thẳng BC đi qua điểm E(7;0) và điểm M có tung độ âm

Câu 7

(1,0 điểm)

I

M C

0,25

+ Lập ptđt IM qua I và IM CN : 4(x-4)+3(y-1)=0  4x+3y-19=0

+ M là giao điểm (T) với IM : M(7; 3)

Vì B,D nằm cùng phía với CN nên D(-1 ;1)

+Do BAuuur CDuuur => A(-1 ;5)

* Nếu không loại mà lấy cả 2 điểm D chỉ cho 0,75đ

Trang 37

SỞ GD& ĐT VĨNH PHÚC

TRƯỜNG THPT YÊN LẠC ĐỀ KHẢO SÁT CHẤT LƯỢNG LẦN 2 - LỚP 12 NĂM HỌC 2015-2016

ĐỀ THI MÔN : TOÁN Thời gian làm bài 150 phút, không kể thời gian giao đề

Câu 1 (2,0 điểm): Cho hàm số 2

x có đồ thị kí hiệu là ( )C

a) Khảo sát và vẽ đồ thị ( )C của hàm số đã cho

b) Tìm m để đường thẳng y  x m cắt đồ thị ( )C tại hai điểm phân biệt A, B sao cho AB2 2

b) Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham gia biểu diễn, tìm

xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số bạn nam nhiều hơn số bạn nữ

Câu 4 (1,0 điểm): Tìm giá trị nhỏ nhất của hàm số yx.logx trên khoảng (0;10)

Câu 5 (1,0 điểm): Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng :y 2 0 và các điểm (0;6), (4; 4)

A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C trên đường thẳng

sao cho tam giác ABC vuông tại B

Câu 6 (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu

vuông góc của S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và mặt

I , tâm đường tròn nội tiếp là (1;0)J Đường phân giác trong góc BAC· và đường phân giác

ngoài góc ·ABC cắt nhau tại K(2; 8) Tìm tọa độ các đỉnh của tam giác ABC biết đỉnh B có hoành độ

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh:……….……….…….….….; Số báo danh:………

Trang 38

- Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làm của thí

sinh Khi chấm nếu thí sinh bỏ qua bước nào thì không cho điểm bước đó

- Nếu thí sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm

- Thí sinh được sử dụng kết quả phần trước để làm phần sau

- Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó

không được điểm

- Trong lời giải câu 6 và câu 7 nếu thí sinh không vẽ hình thì không cho điểm

- Điểm toàn bài tính đến 0,25 và không làm tròn

Trang 39

4 8 0(*)4( 2) 0

b Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham

gia biểu diễn, tìm xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số

bạn nam nhiều hơn số bạn nữ

Trang 40

4 Tìm giá trị nhỏ nhất của hàm số f x( )x.logx trên khoảng (0;10] 1.0

Hàm số đã cho liên tục trên (0;10] Ta có '( ) log 1 log log

A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C

trên đường thẳng  sao cho tam giác ABC vuông tại B

Tam giác ABC vuông tại B nên uuur uuurBA BC         0 4t 16 4 0 t 3 C(3; 2) 0.25

6 Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu của

S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và

mặt phẳng (ABCD) bằng 30 Tính theo a thể tích khối chóp S.ABCD và cosin của 0

góc giữa đường thẳng AC và mặt phẳng (SAB)

1.0

Ngày đăng: 29/01/2016, 17:03

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên: - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên: (Trang 2)
Bảng biến thiên: - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên: (Trang 9)
3) Đồ thị:  Đồ thị (C) của hàm số nhận Oy làm trục đối xứng, giao với Ox tại 2 điểm - 30 bộ đề thi thử thpt quốc gia môn toán 2016
3 Đồ thị: Đồ thị (C) của hàm số nhận Oy làm trục đối xứng, giao với Ox tại 2 điểm (Trang 31)
Bảng biến thiên - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên (Trang 48)
Đồ thị hàm số (1) có 2 điểm cực trị   PT (*) có 2 nghiệm phân biệt   m 0 **   - 30 bộ đề thi thử thpt quốc gia môn toán 2016
th ị hàm số (1) có 2 điểm cực trị  PT (*) có 2 nghiệm phân biệt   m 0 **   (Trang 50)
Bảng biến thiên - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên (Trang 61)
Bảng biến thiên - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên (Trang 73)
Đồ thị cắt trục hoành tại điểm    2; 0 , cắt trục tung tại điểm (0;-4) - 30 bộ đề thi thử thpt quốc gia môn toán 2016
th ị cắt trục hoành tại điểm   2; 0 , cắt trục tung tại điểm (0;-4) (Trang 84)
Bảng biến thiên: - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên: (Trang 101)
Bảng biến thiên - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên (Trang 108)
Bảng biến thiên: - 30 bộ đề thi thử thpt quốc gia môn toán 2016
Bảng bi ến thiên: (Trang 133)
Đồ thị - 30 bộ đề thi thử thpt quốc gia môn toán 2016
th ị (Trang 145)

TỪ KHÓA LIÊN QUAN

w