1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 18

2 182 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 58 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Gọi I là giao điểm của các đường tiệm cận.. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất.. Tìm giá trị nhỏ nhất của biểu P II.. Lập phương trình đườ

Trang 1

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 18 )

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I: (2 điểm) Cho hàm số 2 3

2

=

x y x 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2) Cho M là điểm bất kì trên (C) Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại

A và B Gọi I là giao điểm của các đường tiệm cận Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất

Câu II (2 điểm)

1) Giải phương trình: 1 sin sin cos sin 2 2cos 2

π

2

1 log (4 4 1) 2 2 ( 2)log

2

− + − > − +  − ÷

Câu III (1 điểm) Tính tích phân: 2

1

ln

3 ln

1 ln

+

Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a BC =

2

a

SA a= 3, · SAB SAC=· = 30 0

Tính thể tích khối chóp S.ABC

Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c = 3

4 Tìm giá trị nhỏ nhất của biểu

P

II PHẦN RIÊNG (3 điểm)

A Theo chương trình Chuẩn

Câu VIa (2 điểm)

1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho cho hai đường thẳng d1 : 2x y− + = 5 0 d2:

3x + 6y – 7 = 0 Lập phương trình đường thẳng đi qua điểm P( 2; –1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng

d1, d2

2) Trong không gian với hệ trục toạ độ Oxyz, cho 4 điểm A( 1; –1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; –1; 2) và mặt phẳng (P) có phương trình: x y z+ + − = 2 0 Gọi A’ là hình chiếu của A lên mặt phẳng Oxy Gọi ( S) là mặt cầu đi qua 4 điểm A, B, C, D Xác định toạ độ tâm và bán kính của đường tròn (C) là giao của (P) và (S)

Câu VIIa (1 điểm) Tính diện tích của hình phẳng giới hạn bởi các đường:

= −

y x xy= 2x

B Theo chương trình Nâng cao

Câu VIb (2 điểm)

1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho Hypebol (H) có phương trình: 2 2 1

16xy9 =

Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H).

2) Trong không gian với hệ trục toạ độ Oxyz, cho ( )P x: + 2y z− + = 5 0 và đường thẳng

3

2

+ = + = −

x

d y z , điểm A( –2; 3; 4) Gọi là đường thẳng nằm trên (P) đi qua giao điểm của (d) và (P) đồng thời vuông góc với d Tìm trên điểm M sao cho khoảng cách AM ngắn

nhất

Trang 2

Câu VIIb (1 điểm): Giải hệ phương trình

2

 + + = +



x y y x

Ngày đăng: 26/07/2015, 08:22

w