1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 124

1 146 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 66 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2 Viết phơng trình tiếp tuyến của C tại điểm uốn và chứng minh rằng tiếp tuyến tại điểm uốn có hệ số góc nhỏ nhất.. Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoàn

Trang 1

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010

Mụn thi : TOÁN (ĐỀ 124 )

Phần chung cho tất cả thí sinh (7,0 điểm)

Câu I (2,0 điểm)

Cho hàm số y x= 3+6x2 +9x+3

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2) Viết phơng trình tiếp tuyến của (C) tại điểm uốn và chứng minh rằng tiếp tuyến tại điểm uốn có hệ

số góc nhỏ nhất

Câu II (2,0 điểm)

1) Giải phơng trình (tanx−2)sin2 x=3(cos 2x+sin cos )x x

2) Giải bất phơng trình: 2x2+3x− ≤5 2x−1

Câu III (1,0 điểm)

Cho hình phẳng D giới hạn bởi đồ thị hàm số 2

3

x y

x

= + , trục Ox và đờng thẳng x=1 Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành

Câu IV (1,0 điểm)

Trong các khối trụ có thể tích là V, hãy xác định khối trụ có diện tích toàn phần nhỏ nhất

Câu V (1,0 điểm)

Cho a, b, c là các số thực không âm Chứng minh rằng

a + + +b c ab bc ca+ + ≤ a b c+ + a + +b c

Phần riêng (3,0 điểm): Thí sinh chỉ đợc làm một trong hai phần (Phần A hoặc B)

A Theo chơng trình chuẩn

Câu VI.a (2,0 điểm)

1) Trong mặt phẳng Oxy, cho tam giác ABC có diện tích bằng 3 2 và các đỉnh A(3 ; -5), B(4 ; -4) Biết rằng trọng tâm G của tam giác ABC thuộc đờng thẳng 3x y− − =3 0 Tìm tọa độ đỉnh C 2) Trong không gian Oxyz, cho mặt phẳng (P): 3x−8y+7z− =6 0 và hai điểm A(1;1; 3)− , B(3;1; 1)− Tìm tọa độ điểm C thuộc mặt phẳng (P) sao cho tam giác ABC đều

Câu VII.a (1,0 điểm)

Tìm tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa mãn điều kiện:

z+ − = − +i z i

B Theo chơng trình nâng cao

Câu VI.b (2,0 điểm)

1) Trong mặt phẳng Oxy, cho hình bình hành ABCD có diện tích bằng 4, các đỉnh A(2 ; 2), B(-2 ; 1) Tìm tọa độ đỉnh C và D biết rằng giao điểm của AC và BD thuộc đờng thẳng x−3y+ =2 0

2) Trong không gian Oxyz, cho mp(P): 3x−8y+7z− =6 0, đờng thẳng d: 1 3 3

x− = y+ = z

phơng trình đờng thẳng ∆ vuông góc với mp(P) sao cho ∆ cắt đờng thẳng d tại một điểm cách mp(P) một khoảng bằng 2

Câu VII.b (1,0 điểm)

Giải hệ phơng trình 3 5 45

3 5 75

x y

y x

 =

 =



………Hết………

Họ và tên thí sinh:………Số báo danh:……… Chữ kí của giám thị 1:………Chữ kí của giám thị 2:………

Ngày đăng: 26/07/2015, 07:52

TỪ KHÓA LIÊN QUAN

w