1. Trang chủ
  2. » Giáo án - Bài giảng

G A Đại số 9 T1(CKTKN)

106 195 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 106
Dung lượng 2,93 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hoạt động 2: Học sinh vận dụng thực hiện ?2 và ?3 Hs lên bảng trình bày cách giải hs khác nhận xét, bổ sung và sửa chữa.. MỤC TIÊU Qua bài này, học sinh cần: – Biết cách tìm điều kiện

Trang 1

Ttuần: 1 Ngày soạn: 14/ 08/2010

CHƯƠNG I CĂN BẬC HAI, CĂN BẬC BA

§ 1 CĂN BẬC HAI

I MỤC TIÊU

Qua bài này học sinh cần:

– Nắm được định nghĩa, kí hiệu về căn bậc hai số học của số không âm

– Biết được liên hệcủa phép khai phương với quan hệ thứ tự và dùng liên hệ nàyđể so sánh các số

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài mới: Giới thiệu bài

Hoạt động 1: Tìm hiểu căn bậc hai số học

Hs đọc mục 1 SGK để thu nhận thông tin

và xử lí thông tin

GV: Căn bậc hai của một số dương là gì?

Hs trả lời- hs nhận xét và bổ sung

GV: Số dương có mấy căn bậc hai? Số 0 có

mấy căn bậc hai? Số âm có căn bậc hai

không?

Hs trả lời- hs nhận xét và bổ sung

GV: Hãy tìm căn bậc hai của các số sau: 9;

4

9 ; 0,25; Hs đứng tại chỗ nêu các căn bậc

hai của các số trên

Hs nhận xét và bổ sung

GV: Uốn nắn cách trình bày cho học sinh

Hãy nêu định nghĩa căn bậc hai số học của

một số dương?

Học sinh đọc định nghĩa trong SGK

GV: Đối với loại số nào thì không có căn

bậc hai? Căn bậc hai số học của một số

dương là một số âm hay số dương?

GV: Cho ví dụ và hướng dẫn học sinh trình

1 Căn bậc hai số học

c Số 0,25 có hai căn bậc hai là 0,5và -0,5

d Số 2 có hai căn bậc hai là 2 và - 2

Định nghĩa:

(SGK)

Ví dụ:

Trang 2

Hoạt động 2: Học sinh vận dụng thực hiện

?2 ?3

Hs lên bảng trình bày cách giải hs khác

nhận xét, bổ sung và sửa chữa

GV: Mỗi số dương bất kì có mấy căn bậc

hai?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Hoạt động3: So sánh các căn bậc hai số

học.

GV: Để so sánh hai căn bậc hai ta làm gì?

Hs nêu định lí trong sgk

GV : tóm tắt định lí

GV: Hãy so sánh các số sau:

GV: Cho ví dụ Hướng dẫn học sinh trình

bày cách so sánh

Hs lên bảng trình bày cách giải

Hs nhận xét và bổ sung thêm

GV: Uốn nắn cách trình bày cho học sinh

Hoạt động 4: Hoạt động nhóm thực hiện

GV: Để so sánh hai căn bậc hai ta làm như

thế nào? Có mấy cách?

Học sinh hoạt động theo nhóm

Mời đại diện nhóm lên bảng trình bày cách

giải

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Căn bậc hai số học của 36 là 36 (=6)Căn bậc hai số học của 49 là 49 (=7)

Chú ý: Với a ≥ 0 ta có:

Nếu x = a thì x ≥ 0 và x2 = aNếu x ≥ 0 và x2 = a thì x = a

a 64 có hai căn bậc hai là: 8 và -8

b 81 có hai căn bậc hai là: 9 và -9

c 1,21 có hai căn bậc hai là: 1,1 và -1,1

2 So sánh các căn bậc hai của số học Định lí:

a x > 1; b x < 3Giải

Trang 3

a 1 = 1 nên x > 1 nghĩa là x > 1

vì x ≥0 nên x > 1

b 3 = 9 nên x < 3 nghĩa là x < 9

vì x ≥0 nên 0 ≤ x < 9

4 Củng cố

- Căn bậc hai của một số dương là gì?

- Thế nào là căn bậc hai số học của một số?

- Có phải mọi số đều có căn bậc hai không? Vì sao?

5 Dặn dò

Học sinh về nhà làm bài tập 3; 4; 5 SGK;

Chuẩn bị bài mới

IV RÚT KINH NGHIỆM.

Trang 4

Tuần: 1 Ngày soạn: 15/ 08/ 2010

§2 CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC A2 = |A|

I MỤC TIÊU

Qua bài này, học sinh cần:

– Biết cách tìm điều kiện xác định (hay điều kiện có nghĩa) của A và có kĩ năngthực hiện điều kiện đó khi biểu thức A không phức tạp (bậc nhất, phân thức mà tử thứchoặc mẫu thức là bậc nhất còn mẫu hay tử còn lại là hằng số hoặc bậc hai dạng a2 + mhay –( a2 + m) khi m dương

– Biết cách chứng minh định lí a2 = |a| và biết vận dụng hằng đẳng thức 2

A = |A| để rút gọn biểu thức

II CHUẨN BỊ

Giáo viên: Giáo án, SGK, phấn, thước thẳng

Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Thế nào gọi là căn bậc hai của một số không âm?

Số nào không có căn bậc hai?

3 Bài mới: Giới thiệu bài

Hoạt động 1: Tìm hiểu căn bậc hai

Hãy phân biệt căn bậc hai của biểu thức

và biểu thức lấy căn ?

Hs nêu tổng quát

Giáo viên tóm tắt tổng quát

GV: Căn cứ vào đâu để biết biểu thức lấy

căn?

GV: Vậy căn bậc hai của A có nghĩa khi

nào?

GV: lấy thêm ví dụ để hs nắm vững hơn

1 Căn thức bậc hai

?1 Hướng dẫn

AD = 52−x2

Tổng quát:

(SGK)

A là biểu thức đại số

A là căn thức bậc hai của A

Trang 5

GV: Vậy với giá trị nào của x thì 5 2x

xác định?

Căn bậc hai xác định khi nào? Biểu thức

dưới dấu căn phải như thế nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn cách trình bày cho học sinh

Hoạt động 2: Tìm hiểu hằng đẳng thức

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

GV: Qua ví dụ trên em có nhận xét gì về

quan hệ giữa a và a ?2

GV: Để lấy căn bậc hai của một biểu

thức thì biểu thức dưới dấu căn phải như

thế nào?

GV: Rút gọn biểu thức nghĩa là phải làm

gì?

GV: Hãy nhắc lại định nghĩa giá trị tuyệt

đối của một biểu thức?

GV: Hướng dẫn Hs trình bày cách giải

A là biểu thức lấy căn

A xác định ( có nghĩa) khi A lấy giá trịkhông âm

Ví dụ: 5x là căn bậc hai của 5x;

5x xác định khi 5x ≥ 0 tức là khi x ≥0

?2 Hướng dẫn

Tìm x để 5 2x− xác định Giải

5 2x− xác định khi 5-2x ≥ 0 tức là x ≤ 5

2

Vậy x ≤ 5

2 thì căn thức 5 2x− xácđịnh

2 Hằng đẳng thức 2

A =|A|

?3 Hướng dẫn Điền số thích hợp vào chỗ trống

Trang 6

Hs lên bảng trình bày cách giải các ví dụ

GV: Cho Hs nhận xét cách trình bày và

bổ sung thêm vào cách làm của bạn

GV: Cho HS đọc chú ý trong SGK

GV: Cho ví dụ để Hs nhận dạng và nắm

chắc được chú ý hơn

GV: Hướng dẫn Hs trình bày cách giải ví

dụ trên

GV: HS lên bảng trình bày cách giải

GV: Cho Hs nhận xét cách trình bày và

bổ sung thêm vào cách làm của bạn

GV: Uốn nắên cách trình bày cho học sinh

do đó | a3 | = – a3 với a < 0 Vậy 6

a = – a3 với a < 0

4 Củng cố

– Căn bậc hai xác định (có nghĩa) khi nào?

– Phân biệt căn bậc hai của một biểu thức và biểu thức lấy căn?

5 Dặn dò

IV RÚT KINH NGHIỆM.

Trang 7

Tuần: 1 Ngày soạn: 16/ 08/ 2010

LUYỆN TẬP

I MỤC TIÊU

– Học sinh vận dụng các kiến thức đã học để giải các dạng bài tập

– Học sinh sử dụng hằng đẳng thức A2 = |A| thành thạo

II CHUẨN BỊ

* Giáo viên: Giáo án,SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: A xác định khi nào? Hãy tìm x để 2x xác định?

2

5

x+ với x > 0

3 Bài luyện tập

Hoạt động 1: Tìm điều kiện căn thức có

nghĩa

GV: Cho HS đọc đề bài và nêu yêu cầu của

bài toán

GV: Bài toán yêu cầu gì? Căn thức có

nghĩa khi nào? Giá trị của biểu thức dưới

dấu căn phải như thế nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Dạng 1: Tìm điều kiện để căn thức có nghĩa

Bài 12 trang 11 SGK Hướng dẫn

a 2x+7 có nghĩa khi 2x + 7 ≥ 0 tức là x 7

2

Vậy x≥ −27 thì 2x+7 có nghĩa

b − +3x 4 có nghĩa khi -3x + 4 ≥ 0 tức là x 4

3

Vậy x ≤43 thì − +3x 4 có nghĩa

Trang 8

GV: Hướng dẫn học sinh cách trình bày

dạng toán trên

Chú ý cho học sinh thấy được có những

biểu thức luôn luôn dương với mọi giá trị

của biến

Hoạt động 2: Vận dụng hằng đẳng thức.

Hs đọc bài

Bài toán yêu cầu gì?

Để rút gọn các biểu thức trên ta cần làm

gì?

Hãy nhắc lại hằng đẳng thức?

GV: cho học sinh nhắc lại hằng đẳng thức

Khi lấy giá trị tuyệt đối của một biểu thức

có thể có mấy trường hợp?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

GV: Chú ý cho học sinh khi lấy giá trị tuyệt

đối của một biểu thức nhận giai trị âm

Hoạt động 3: phân tích đa thức

GV: Cho HS đọc đề bài và nêu yêu cầu của

bài toán

GV: Bài toán yêu cầu gì?

GV: Phân tích đa thức thành nhân tử nghĩa

là gì?

Có mấy phương pháp phân tích đa thức

thành nhân tử? Đó là những phương pháp

nào?

Với các đa thức trên thì ta cần sử dụng các

phương pháp nào cho từng đa thức cụ thể?

Hướng dẫn học sinh cách trình bày

GV: Cho HS lên bảng trình bày cách thực

a – 5a với a < 0 = 2|a| – 5a = 2(–a) – 5a (vì a < 0 = –7a

2a – 3a3 = 5|2a3| – 3a3 = = 5.2(–a3) – 3a3 = – 13a3

Dạng 3: Phân tích thành nhân tử

Bài 14 trang 11 SGK Hướng dẫn:

a x2 – 3 = x2 – ( )2

3 = = (x + 3)(x – 3)

b x2 – 6 = x2 – ( )2

6 = = (x + 6)(x – 6)

c x2 + 2 3x + 3 = = x2 + 2 3x + ( )2

3

= (x + 3)2

d x2 – 2 5x + 5 = = x2 – 2 5x + ( 5)2

= ( x – 5)2

Trang 9

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

GV: nhấn mạnh lại các hằng đẳng thức

đáng nhớ đã học

Hoạt động 4: Tìm giá trị chưa biết

GV: Cho HS đọc đề bài và nêu yêu cầu của

bài toán

GV: Bài toán yêu cầu gì?

Giải phương trình có nghĩa là thực hiện các

bước nào?

GV: Chúng ta đã giải được những loại

phương trình nào?

GV: Hãy nêu các phép biến đổi tương

đương các phương trình mà em đã học?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn cách trình bày cho học sinh

Nhấn mạnh lại các phép biến đổi tương

đương các phương trình

Dạng 4: Giải phương trình.

Bài tập 15 trang 11 SGK Hướng dẫn

a x2 – 5 = 0 ⇔ x2 = 5 ⇔x2 = ( 5)2

⇔ x = 5 và x = – 5

b x2 – 2 11x + 11 = 0 ⇔ x2 – 2 11x + ( 11)2 = 0 ⇔(x – 11)2 = 0

⇔ x – 11 = 0 ⇔ x = 11

– Học sinh về nhà học bài và làm bài tập 19;20 SGK

– Chuẩn bị bài mới

IV RÚT KINH NGHIỆM.

Trang 10

Tuần: 2 Ngày soạn: 22/ 08/ 2010

§3 LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG

I MỤC TIÊU

Qua bài này, học sinh cần:

– Nắm được nội dung và cách chứng minh định lí về liên hệ giữa phép nhân vàphép khai phương

– Có kĩ năng dùng các quy tắc khai phương một tích và nhân các căn bậc hai trongtính toán và biến đổi biểu thức

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Không kiểm tra

3 Bài mới: Giới thiệu bài

Hoạt động 1: Tìm hiểu định lí thông qua

làm bài tập

GV: Cho HS đọc đề bài và nêu yêu cầu của

Trang 11

GV: Để tính giá trị của căn thức ta thực hiện

GV: Vậy nếu với hai biểu thức dương ta có

mối liên hệ nào?

GV: Cho học sinh đọc định lí

GV: Tóm tắt định lí bằng kí hiệu

Hướng dẫn học sinh chứng minh định lí trên

Hoạt động 2: Tìm hiểu quy tắc khai phương

GV: Để khai căn một thương ta có thể thực

hiện như thế nào?

GV: Em có nhận xét gì về số bị chia và số

chia trong thương trên? Các số đó có khai

căn được không?

Vận dụng quy tắc thực hành

Hoạt động 3: Vận dụng quy tác làm bài tập

Hoạt động theo nhóm.

GV: Cho một học sinh nhắc lại quy tắc

HS thực hiện theo nhóm trình bày cách giải

GV: Cho đại diện nhóm lên bảng trình bày

cách giải

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

Gv: Uốn nắn thống nhất cách trình bày cho

học sinh

Hoạt động 4: Tìm hiểu quy tắc chia hai căn

thức.

HS đọc quy tắc trong SGK

GV: Cho ví dụ và hướng dẫn học sinh cách

trình bày

16 25= 4 5 = 20 Vậy 16.25 = 16 25

Định lí: Với mọi a ≥ 0, b ≥ 0 ta có:

ab = a b

Chứng minh(SGK)

b Quy tắc nhân các căn thức bậc hai

Trang 12

GV: Em có nhận xét gì về các số dưới căn

Hướng dẫn học sinh trình bày

Chú ý học sinh nhận dạng khi nào cần đưa

về khai phương một thương

Hoạt động 5: Vận dụng quy tắc chia hai căn

bậc hai

Hoạt động theo nhóm học tập

Gv: Cho học sinh đọc lại quy tắc chia hai

căn thức bậc hai

Để chia hai căn bậc hai ta có thể đưa về

dạng nào?

Đại diện hai nhóm lên bảng trình bày cách

thực hiện

Hs nhận xét và bổ sung thêm

Gv: Uốn nắn thống nhất cách trình bày cho

học sinh

Gv: Cho học sinh nêu chú ý trong sgk

Gv: nhấn mạnh lại định lí

Gv: Hướng dẫn học sinh làm ?4

Để rút gọn biểu thức nghĩa là thực hiện các

– Hãy nêu quy tắc khai phương một tích?

– Hãy nêu quy tắc nhân hai căn thức bậc hai?

– Vận dụng các quy tắc tính: a 0,09.64; b 4( )2

2 7− ;

c 7 63; d 2,5 30 48

5 Dặn dò

Trang 13

– Học sinh về nhà học bài và làm bài tập 17;18;19;20 SGK– Chuẩn bị bài tập phần luyện tập

IV RÚT KINH NGHIỆM.

LUYỆN TẬP

I MỤC TIÊU

– Củng cố cho học sinh liên hệ giữa phép nhân và phép khai phương

– Rèn luyện kĩ năng khai phương của một tích nhiều thừa số

– Học sinh vận dụng thành thạo quy tắc khai phương một tích, quy tắc nhân cáccăn thức bậc hai

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Hãy phát biểu quy tắc khai phương một tích? Nhân các căn thức bậc hai?

3 Bài luyện tập

Hoạt động 1: Tính giá trị

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

Dạng 1: Tính giá trị của biểu thức

Bài tập 22 trang 15 SGK

Hướng dẫn:

Trang 14

GV: Để tính giá trị của biểu thức ta cần

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 2: Chứng minh

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Để chứng minh đẳng thức ta có mấy

phương pháp? Đó là những phương nào?

Đối với bài toán trên ta thực hiện như thế

nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

Hai số như thế nào gọi là nghịch đảo của

nhau? Hai số nghịch đảo của nhau thì tích

của chúng bằng bao nhiêu?

Vậy để chứng minh hai số là nghịch đảo

của nhau thì ta cần chứng minh điều gì?

Học sinh lên bảng trình bày cách giải

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn cách trình báy cho học sinh

Hoạt động 3: Tìm giá trị.

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu chúng ta làm gì?

GV: Để tính giá trị của biểu thức thì ta

thay các giá trị của biến vào biểu thức

hay thực hiện thêm bước nào nữa?

GV: Hãy biến đổi các biểu thức trên và

tính giá trị của các biểu thức tại các giá

Dạng 2: Chứng minh đẳng thức

Bài tập 23 trang 15 SGK Hướng dẫn:

Dạng 3: Tính giá trị của biểu thức

Bài tập 24 trang 15 SGK Hướng dẫn:

Trang 15

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 4: Tìm một số chưa biết.

GV: Bài toán yêu cầu ta thực hiện điều

gì?

GV: Để tìm được giá trị của x chúng ta

cần thực hiện những bước nào?

Hãy nêu các phương pháp giải bài toán

trên?

GV: Em có nhận xét gì về các biểu thức

dưới dấu căn?

Hãy nhắc lại hằng đẳng thức khai phương

một số?

Nếu hai vế của một đẳng thức không âm

ta bình phương cả hai vế thì đẳng có gì

thay đổi không?

GV: Hãy nêu các cách trình bày bài toán

trên

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn cách trình bày cho học sinh

b 4x = 5

⇔4x = 5 ⇔x = 5

4

c 9(x− =1) 21

⇔3 x−1 = 7 ⇔ x−1 = 49

⇔ x – 1 = 49 ⇔ x = 50

Trang 16

– Chuẩn bị bài mới.

IV RÚT KINH NGHIỆM.

§4 LIÊN HÊÏ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG

I MỤC TIÊU

Qua bài này học sinh cần:

– Nắm được nội dung và cách chứng minhđịnh lí về liên hệ giữaphép chia và phépkhai phương

– Có kĩ năng dùng các quy tắc khai phương một thương và chia hai căn thức bậchai trong tính toán và biến đổi các biểu thức

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

Trang 17

2 Bài cũ: Phát biểu quy tắc khai phương một tích- nhân các căn thức bậc hai?

3 Bài mới: Giới thiệu bài

Hoạt động 1: Tìm định lí thông qua làm

bài tập

Hãy nêu yêu cầu của ?1

GV: Để tính giá trị của căn thức ta thực

hiện như thế nào?

GV: Hãy vận dụng kiến thức đã học để

trình bày cách thực hiện?

GV: cho học sinh tự trình bày và đưa ra

nhận xét

Vậy nếu với hai biểu thức dương ta có mối

liên hệ nào?

GV: Cho học sinh đọc định lí

GV: Tóm tắt định lí bằng kí hiệu

Hướng dẫn học sinh chứng minh định lí

GV: Để khai căn một thương ta có thể thực

hiện như thế nào?

GV: Em có nhận xét gì về số bị chia và số

chia trong thương trên? Các số đó có khai

căn được không?

Vận dụng quy tắc thực hành

Hoạt động 3: Vận dụng quy tác làm bài tập

Hoạt động theo nhóm

GV: Cho một học sinh nhắc lại quy tắc

HS: thực hiện theo nhóm trình bày cách

1 Định lí

?1 Hướng dẫn Tính váo sánh: 16

a 225

256 b 0,0196

Trang 18

GV: Cho HS lên bảng trình bày cách thực

hiện

HS nhận xét và bổ sung thêm vào cách

trình bày của bạn

GV: Uốn nắn thống nhất cách trình bày cho

học sinh

Hoạt động 4: Tìm hiểu quy tắc chia hai căn

thức.

HS đọc quy tắc trong SGK

GV: Cho ví dụ và hướng dẫn học sinh cách

trình bày

GV: Em có nhận xét gì về các số dưới căn

thức?

GV: Để chia các căn thức trên ta có thể đưa

về dạng nào?

GV: Có thể đưa về dạng khai căn một

thương được không?

Hướng dẫn học sinh trình bày

GV: Chú ý học sinh nhận dạng khi nào cần

đưa về khai phương một thương

Hoạt động 5: Vận dụng quy tắc chia hai

căn bậc hai.

Hoạt động theo nhóm học tập

GV: Cho học sinh đọc lại quy tắc chia hai

căn thức bậc hai

GV: Để chia hai căn bậc hai ta có thể đưa

về dạng nào?

Đại diện hai nhóm lên bảng trình bày cách

thực hiện

Hs nhận xét và bổ sung thêm

GV: Uốn nắn thống nhất cách trình bày cho

học sinh

GV: Cho học sinh nêu chú ý trong SGK

GV: nhấn mạnh lại định lí

GV: Hướng dẫn hs thực hiện ?4

GV: Cho HS đọc đề bài và nêu yêu cầu của

bài toán

GV: Để rút gọn biểu thức nghĩa là thực

hiện các bước nào?

b Quy tắc chia hai căn bậc hai

?3 Hướng dẫn Tính

Trang 19

GV: Với các biểu thức trên ta có điều kiện

nào của biến?

Vận dụng các quy tắc đã học hãy rút gọn

các biểu thức

GV: Cho HS đọc đề bài và nêu yêu cầu của

bài toán

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

– Hãy nhắc lại quy tắc khai phương một thương- chia hai căn bậc hai

– Hãy nhắc lại quy tắc chia hai căn bậc hai

– Hướng dẫn HS làm bài tập 28 SGK

5 Dặn dò

– Học sinh về nhà học bài và làm bài tập 29; 30; 31 SGK;

– Chuẩn bị bài tập phần luyện tập

IV RÚT KINH NGHIỆM.

LUYỆN TẬP

I MỤC TIÊU

– Củng cố quy tắc khai phương một thương – quy tắc chia các căn bậc hai

– Rèn luyện kỹ năng vận dụng quy tắc vào giải các dạng bài tập

– HS thực hiện thành thạo các dạng bài tập đơn giản

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn

* Học sinh: Ôn tập các quy tắc – vở ghi - SGK

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức:

2 Bài cũ: Nêu quy tắc chia các căn bậc hai

Trang 20

Quy tắc khai phương một thương.

3 Bài luyện tập:

Hoạt động 1: Tính giá trị của biểu thức

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Để tính giá trị bài toán trên ta cần

thực hiện những bước nào?

GV: Hãy biến đổi các biểu thức dưới dấu

căn để tính giá trị của căn thức đó

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Hướng dẫn hs trình bày câu c, d

Hoạt động 2: Giải phương trình

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì? Để giải phương

trình ta cần thực hiện như thế nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

GV: Hướng dẫn học sinh trình bày các câu

c, d

Hoạt động 3: Rút gọn

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

Dạng 1: Tính giá trị của biểu thức.

Bài tập 32 trang 19 SGK Hướng dẫn:

a 19 5 0, 014

16 9

25 49 1

16 9 100

25 49 1

16 9 100

5 7 1 35 7

Dạng 2: Giải phương trình

Bài tập 33 trang 19 SGK Hướng dẫn

x x x x x

Dạng 3: Rút gọn biểu thức.

Bài tập 34 trang 19 SGK Hướng dẫn

Trang 21

GV: Muốn rút gọn ta thực hiện như thế

nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Hoạt động 4: Lựa chọn

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Cho HS đọc lại từng câu và cho HS

lựa chọn đúng hoặc sai

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

9 12a 4a b

Dạng 4: Lựa chọn kết luận đúng.

Bài tập 36 trang 20 SGK

Trang 22

Tuần: 4 Ngày soạn: 08/ 09/ 2010

§5 BẢNG CĂN BẬC HAI

I MỤC TIÊU

Qua bài này, học sinh cần:

– Hiểu được cấu tạo của bảng căn bậc hai

Trang 23

– Có kỹ năng tra bảng căn bậc hai của một số không âm

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, bảng số với 4 chữ số thập phân, phấn

* Học sinh: Vở ghi – SGK, bảng số, chuẩn bị bài

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Nêu định nghĩa căn bậc hai của một số

Định lí khai phương một thương- tích

3 Bài mới:- Giới thiệu bài

Hoạt động 1: Tìm hiểu bảng số

GV: Dùng quyển bảng số với 4 chữ số thập

phân giới thiệu cho học sinh vị trí của bảng

căn bậc hai

Học sinh đọc phần giới thiệu để hiểu rõ

hơn nữa về bảng căn bậc hai

Giáo viên giới thiệu rõ về cấu tạo của bảng

Hoạt động 2:Hoạt động nhóm

Giáo viên chia nhóm học sinh thực hiện tra

bảng tìm giá trị của căn bậc hai sau

GV: Hướng dẫn HS cách tra bảng tìm giá

trị của một căn bậc hai

GV: Cho HS lên trình bày

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

HS vận dụng thực hiện ?1

HS nhận xét và bổ sung thêm

GV: uốn nắn cách trình bày cho học sinh

GV giới thiệu cách tìm căn bậc hai của một

số lớn hơn 100

Gv: các số lớn hơn 100 có thể viết dưới

dạng tích của hai thừa số trong đó có một

thừa số 100 không?

Cho ví dụ học sinh vận dụng để thực hiện

Hãy vận dụng thực hiện ?2

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

1 Giới thiệu bảng.

(SGK)

2 Cách dùng bảng.

a Tìm căn bậc hai của một số lớn hơn 1 vànhỏ hơn 100

VD Tính 1,68≃ 1,296 39,1≃ 6,253 39,18= 6,253 + 0,006 ≃ 6,259

?1 Hướng dẫn Tìm

9,11≃ 3,018

Trang 24

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Hoạt động 3: Tìm căn bậc hai của một số

không âm và nhỏ hơn 1

Ta có thể viết các số dương nhỏ hơn 1 dưới

dạng thương của hai số không? Cách viết

như thế nào?

GV: Hãy viết số sau dưới dạng thương?

GV: Hướng dẫn học sinh trình bày cách

thực hiện

GV: Cho HS đọc chú ý như trong SGK

GV nhấn mạnh lại chú ý

Hoạt động 4: Vận dụng thực hiện ?3

trong SGK Hoạt động nhóm

GV: Giá trị của x được tính như thế nào?

x có mấy giá trị ? Đó là những giá trị nào?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

– Nhấn mạnh lại cách tra bảng tìm căn bậc hai của một số

– Hướng dẫn học sinh thực hiện bài tập 38; 39 SGK

§6 BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI

Trang 25

I MỤC TIÊU

Qua bài này, học sinh cần:

– Biết được cơ sở của việc đđưa thừa số ra ngoài dấu căn và đưa thừa số vào trongdấu căn

– Nắm được các kĩ năng đưa thừa số vào trong hay ra ngoài dấu căn

– Biết vận dụng các phép biến đổi trên để so sánh hai số và rút gọn biểu thức

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn

* Học sinh: Vở ghi – SGK, chuẩn bị bài

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Phát biểu định lí khai phương một thương- tích

3 Bài mới:- Giới thiệu bài

Hoạt động 1: Tìm hiểu cách đưa một

thừa số ra ngoài dấu căn

GV: Với a ≥ 0; b ≥ 0 hãy chứng minh

HS nhận xét và bổ sung vào cách trình

bày của bạn

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

GV: Với điều kiện như ?1 cho ta phép

biến đổi đưa thừa số ra ngoài dấu căn

Để đưa thừa số ra ngoài dấu căn ta cần

biến đổi biểu thức dưới dấu căn như thế

nào?

Vận dụng đưa thừa số ra ngoài dấu căn?

GV: Hướng dẫn học sinh cách trình bày

Một thừa số khi đưa ra ngoài dấu căn thì

cần phải như thế nào so với lúc đầu?

Cần phải biến đổi gì để đưa thừa số ra

ngoài dấu căn?

Với giá trị 20 thì biến đổi thế nào để

1 Đưa thừa số ra ngoài dấu căn ?1 Hướng dẫn

Ví dụ 1: Đưa thưà số ra ngoài dấu căn

Trang 26

đưa thừa số nào ra ngoài dấu căn?

GV: Cho ví dụ khác và hưỡng dẫn học

sinh trình bày

Hoạt động 2: Vận dụng kiến thức hoạt

động nhóm thực hiện ?2 ?3 .

GV: Để đưa một thừa số ra ngoài dấu

căn ta cần biến đổi thừa số đó về dạng

nào?

GV:Với biểu thức là chữ thì ta cần chú ý

điều gì?

GV:Hãy biến đổi đưa thừa số ra ngoài

dấu căn Đại diện các nhóm lên bảng

trình bày cách thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 3: Tìm hiểu cách đưa một

thừa số vào trong dấu căn.

HS đọc thông tin trong SGK

GV: nhấn mạnh cách đưa thừa số vào

trong dấu căn

GV: Tóm tắt bằng kí hiệu

Ví dụ 2: Rút gọn biểu thức.

a 28a b4 2 (b ≥ 0); b 72a b2 4 (a < 0)Giải

2 Đưa thừa số vào trong dấu căn

* Phép đưa thừa số ra ngoài dấu căn có phépbiến đổi ngược với nó là phép đưa thừa số vàotrong dấu căn

Trang 27

GV: Cho ví dụ hướng dẫn học sinh trình

bày cách giải

GV: Khi đưa một thừa số vào trong dấu

căn có mấy trường hợp Đó là những

trường hợp nào?

GV: Khi thừa số được đưa vào trong dấu

căn là âm thì dấu của căn thức mang

dấu gì?

Hoạt động 4: Vận dụng thực hiện ?4

Hoạt động theo nhóm

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Hướng dẫn HS cách trình bày

GV: Cho HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Với A < 0 và B ≥ 0 ta có: A B = − A B2

Ví dụ: Đưa thừa số vào trong dấu căn

a 3 5 b 1, 2 5

c ab4 a (a≥0) d −2ab2 5a (a≥0)Giải

– GV: Nhấn mạnh kiến thức trọng tâm của bài;

– Hướng dẫn HS làm bài tập 43 SGK

5 Dặn dò:

– HS về nhà học bài làm bài tập 43, 44, 45, 46 SGK;

– Chuẩn bị bài mới

IV RÚT KINH NGHIỆM.

Trang 28

LUYỆN TẬP

I MỤC TIÊU

– Củng cố phép biến đổi đơn giản biểu thức chứa căn thức bậc hai

– Rèn luyện kỹ năng đưa thừa số vào trong dấu căn – đưa thừa số ra ngoài dấucăn cho học sinh

– HS vận dụng phép biến đổi để thực hiện giải pháp các bài tập đơn giản

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn

* Học sinh: Vở ghi – SGK, chuẩn bị bài

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Nêu đẳng thức đưa thừa số vào trong dấu căn?

Đưa thừa số ra ngoài dấu căn?

3 Bài luyện tập

Hoạt động 1: Dưa thừa số ra ngoài dấu

căn

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Hãy viết đẳng thức thể hiện quy tắc

đưa thừa số ra ngoài dấu căn

HS vận dụng quy tắc đưa thừa số ra

ngoài dấu căn? Để trình bày cách giải

GV: Cho 3 HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 2: Đưa thừa số vào trong dấu

căn

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Khi đưa một thừa số vào trong dấu

căn cần chú ý điều gì?

Dạng 1: Đưa thừa số ra ngoài dấu căn

Bài tập 43 trang 27 SGK Hướng dẫn:

2

3 5= 3 5= 45

Trang 29

GV: Hãy vận dụng quy tắc để thực hiện

các câu sau:

GV: Cho HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 3: So sánh

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Muốn so sánh hai căn thức ta cần

làm gì?

GV: Hãy đưa các thừa số vào trong dấu

căn rồi so sánh giá trị các căn bậc hai?

GV: Cho 3 HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 4: Rút gọn biểu thức

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Để rút gọn biểu thức nghĩa là thực

hiện phép toán nào?

GV: Các căn thức đồng dạng là những

căn thức có giá trị giống nhau ở chỗ

nào?

GV: Cho HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

Dạng 4: Rút gọn biểu thức

Bài tập 46 trang 27 SGK

a 3 3x−4 3x+27 3 3− x

(2 4 3) 3 27

5 3 27

x x

Trang 30

bày cho học sinh.

GV: Giới thiệu căn bậc hai đồng dạng

HS vận dụng kết quả bài tập 46 để thực

hiện bài 47

GV: Hãy đưa thừa số ra ngoài dấu căn

rồi rút gọn biểu thức

GV: Cho HS lên bảng trình bày cách

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Bài tập 47 trang 27 SGK Hướng dẫn:

Trang 31

Tuần: 6 Ngày soạn: 18/ 09/ 2010

§7 BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI

(Tiếp theo)

I MỤC TIÊU

Qua bài này học sinh cần:

– Biết cách khử mẫu của biểu thức lấy căn và trục căn thức ở mẫu

– Bước đầu biết cách phối hợp và sử dụng các phép biến đổi trên

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Hãy nêu các quy tắc biến đổi đơn giản các biểu thức chứa căn bậc hai

3 Bài mới: Giới thiệu bài

Hoạt động 1: Tìm hiểu cách khử mẫu

GV: khử mẫu của biểu thức lấy căn

nghĩa là biến đổi biểu thức đó như thế

nào?

GV: Cho ví dụ và hướng dẫn HS cách

trình bày thục hiện

GV: Vậy muốn khử mẫu của biểu thức

lấy căn nghĩa là ta biến đổi để mẫu là

một biểu thức không chứa căn

GV: Cho hs nêu tổng quát –

GV: Tóm tắt kiến thứclên bảng

Hãy áp dụng quy tắc để thực hiện ?1

Hoạt động 2: Hoạt động nhóm thực

hiện ?1

GV: Cho HS đọc đề bài và nêu yêu

cầu của bài toán

1 Khử mẫu của biểu thức lấy căn.

Ví dụ: Khử mẫu của biểu thức lấy căn.

Trang 32

GV: Cho hs đại diện nhóm lên bảng

trình bày cách biến đổi

GV: Cho HS nhận xét và bổ sung

thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 3: Trục căn thức ở mẫu có

gì khác khử căn thức ở mẫu.

GV: Hãy nhắc lại hằng đẳng thức hiệu

hai bình phương?

GV: Với mẫu của các phân thức trên ta

cần nhân với biểu thức nào?

GV: Hướng dẫn HS thực hiện cách

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

GV: Cho hs nêu tổng quát

GV: Có mấy loại biểu thức chứa căn

thức ở mẫu?

GV: Với mỗi loại biểu thức trên thì

cần nhân với biểu thức như thế nào?

Hoạt động 4: Hoạt động nhóm

Hãy vận dụng kiến thức đã học để trục

căn thức ở mẫu các biểu thức sau?

GV: Hướng dẫn học sinh cách trình

bày các biểi thức trên

GV: Đối với mỗi phân thức trên ta

nhân tử và mẫu với biểu thức nào? Vì

sao? Hãy xác định các biểu thức đó?

GV: Cho 3 HS lên bảng trình bày cách

2 Trục căn thức ở mẫu.

Ví dụ: Trục căn thức ở mẫu

Trang 33

thực hiện

GV: Cho HS nhận xét và bổ sung

thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Cho học sinh nắm được biểu thức liên

hợp của mẫu

Chú ý học sinh khi thực hiện các biểu

thức chứa chữ cần phải có điều kiện cụ

thể cho từng trường hợp

c 74+ 5 ; 2 a6ab Giải

Trang 34

Tuần: 07 Ngày soạn: 25/ 09/ 2010

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Hãy nêu các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai

3 Bài luyện tập

Hoạt động 1: Biến đổi các căn thức bậc

hai

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài tập yêu cầu gì?

GV: Để rút gọn biểu thức ta cần thực hiện

những bước nào?

GV: Với các biểu thức trên ta càân thực

hiện những phép biến đổi nào?

GV: Hãy rút gọn các biểu thức trên?

GV: Cho 4 HS lên bảng trình bày cách

Dạng 1: Rút gọn các biểu thức sau:

Bài tập 53 trang 30 SGK Hướng dẫn

Trang 35

thực hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

GV: Cho HS phân biệt các biểu thức liên

hợp của từng dạng

Hoạt động 2: Trục căn thức ở mẫu.

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Để trục căn thức ở mẫu ta cần thực

hiện những bước nào?

GV: Với các biểu thức trên hãy chỉ ra các

biểu thức liên hợp tương ứng của chúng

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

GV: Cho HS nắm được các biểu thức liên

hợp của từng dạng

Hoạt động 3: Phân tích đa thức

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Bài toán yêu cầu gì?

GV: Hãy nêu các phương pháp phân tích

đa thức đã học? Đó là những phương pháp

nào?

GV: Với các câu trên thì ta dùng phương

pháp nào thì phù hợp?

GV: Hãy nhóm các hạng tử phù hợp để

phân tích đa thức trên?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình bày

cho học sinh

Dạng 2: Trục căn thức ở mẫu.

Bài tập 54 trang 30 SGK

Dạng 3: Phân tích thành nhân tử

Bài tập 55 trang 30 SGK Hướng dẫn

= (ab + b a) + ( a +1) = = b a( a+ +1) ( a+1) = = ( a+1)(b a+1)

b x3 − y3 + x y2 − xy2 =

Trang 36

Hoạt động 4: Lựa chọn

GV: Để lựa chọn đáp án đúng thì chúng ta

cần phải làm gì?

GV: Có thể dùng phép biến đổi nào để

thực hiện?

GV: Giá trị của x là bao nhiêu?

HS nêu đáp án cần chọn

GV: Cho HS nhận xét và bổ sung thêm

GV: Hướng dẫn học sinh cách tìm kết quả

Dạng 4: Lựa chọn giá trị đúng

Bài tập 57 trang 30 SGK

25x− 16x =9 khi x bằng:

A 1; B 3; C 9; D 81.Hãy chọn câu trả lời đúng

Hướng dẫnĐáp án đúng là D

– Học sinh về nhà học bài làm bài tập 56 SGK;

– Chuẩn bị bài mới

IV RÚT KINH NGHIỆM.

Trang 37

Tuần: 07 Ngày soạn: 29/ 09/ 2010

§8 RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI

I MỤC TIÊU

Qua bài này học sinh cần:

– Biết phối hợp các kĩ năng biểu thức chứa căn thức bậc hai

– Biết sử dụng kĩ năng biến đổi biểu thức chứa căn thức bậc hai để giải các bài toán liên quan

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Viết biểu thức biểu thị các phép biến đổi biểu thức chứa căn thức bậc hai?

3 Bài mới: Giới thiệu bài

Hoạt động 1: Nhắc lại các kiến thức đã 1 Kiến thức cơ bản

Trang 38

Hãy nhắc lại các kiến thức đã học về các

phép biến đổi biểu thức chứa căn thức

bậc hai?

Hs lên bảng viết lại các biểu thức đã học

GV: Cho học sinh nhận xét và bổ sung

thêm vào các biểu thức dùng làm công

thức biến đổi

GV: Nhấn mạnh lại tâøm quan trọng của

các biểu thức trên trong việc giải các

dạng bài tập sau này

Hoạt động 2: Vận dụng kiến thức vào

giải bài tập

GV: Cho ví dụ lên bảng

Để rút gọn biểu thức trên ta cần thực

hiện những bước nào?

Hãy dùng các phép biến đổi biểu thức

chứa căn thức bậc hai để biến đổi và rút

gọn biểu thức trên?

GV: Hướng dẫn học sinh thực hiện cách

trình bày

Hoạt động 3: Hoạt động nhóm thực hiện

?1 trong SGK

GV: Cho HS đọc đề bài và nêu yêu cầu

của bài toán

GV: Vận dụng các kiến thức đã học hãy

rút gọn biểu thức sau?

HS thực hiện theo nhóm

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

Hoạt động 4: Dùng phép biến đổi để

chứng minh đẳng thức

GV: Để chứng minh đẳng thức ta có mấy

phương pháp chứng minh? Đó là những

phương pháp nào?

GV: Với đẳng thức trên ta cần biến đổi

vế nào? Vì sao cần biến đổi vế đó?

3 5a−2 5a+4 45a+ a với a ≥ 0

3 5 2 5 4.3 5

3 5 2 5 12 5(3 2 12) 5

Trang 39

GV: Hướng dẫn học sinh trình bày cách

chứng minh đẳng thức trên

Hoạt động 5: Vận dụng chứng minh

đẳng thức

Hs nêu yêu cầu của ?2

GV: Để chứng minh đẳng thức trên ta

cần biến đổi vế nào?

GV: Hãy các dùng phép biến đổi chứng

minh đẳng thức trên?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

GV: Hướng dẫn học sinh trình bày ?3

SGK

GV: Muốn rút gọn biểu thức ta thực hiện

những bước nào?

GV: Em có nhận xét gì về quan hệ giữa

tử và mẫu của biểu thức trên?

GV: Với biểu thức ở câu a sử dụng hằng

đẳng thức nào?

GV: Sử dụng hằng đẳng thức nào để

phân tích tử cho câu b?

GV: Cho HS lên bảng trình bày cách thực

hiện

GV: Cho HS nhận xét và bổ sung thêm

GV: Uốn nắn và thống nhất cách trình

bày cho học sinh

−+ với a ≥ 0, a ≠ 1 b 11−−a a aGiải

– Gv: Nhấn mạnh lại các phép biến đổi đơn giản các biểu thức

– Nêu các dạng toán thường gặp và phương pháp giải các dạng toán đó.– Hướng dẫn học sinh giải bài tập 59 SGK

5 Dặn dò

Trang 40

– Học sinh về nhà học bài làm bài tập 59; 60; 61 SGK

– Chuẩn bị bài tập phần luyện tập

IV RÚT KINH NGHIỆM.

LUYỆN TẬP

I MỤC TIÊU

– Củng cố lại cách rút gọn biểu thức chứa căn thức bậc hai

– Rèn luyện kĩ năng giải toán cho học sinh

II CHUẨN BỊ

* Giáo viên: Giáo án, SGK, phấn, thước thẳng

* Học sinh: Chuẩn bị bài và dụng cụ học tập

III TIẾN TRÌNH LÊN LỚP

1 Ổn định tổ chức: Kiểm tra sĩ số

2 Bài cũ: Nêu các phép biến đổi các biểu thức bậc hai

3 Bài luyện tập

Ngày đăng: 25/10/2014, 21:00

HÌNH ẢNH LIÊN QUAN

2. Đồ thị của hàm số  ?2   Hướng dẫn - G A Đại số 9 T1(CKTKN)
2. Đồ thị của hàm số ?2 Hướng dẫn (Trang 57)
§3. ĐỒ THỊ HÀM SỐ  y = ax+b ( a ≠ 0) - G A Đại số 9 T1(CKTKN)
3. ĐỒ THỊ HÀM SỐ y = ax+b ( a ≠ 0) (Trang 67)
Đồ thị hàm số y = 2x -3 là đường thẳng đi  qua hai điểm (0 ;-3) và điểm (1,5; 0) - G A Đại số 9 T1(CKTKN)
th ị hàm số y = 2x -3 là đường thẳng đi qua hai điểm (0 ;-3) và điểm (1,5; 0) (Trang 69)
7. Đồ thị hàm số y = ax + b (a ≠ 0) 8. Quan hệ giữa hai đường thẳng. - G A Đại số 9 T1(CKTKN)
7. Đồ thị hàm số y = ax + b (a ≠ 0) 8. Quan hệ giữa hai đường thẳng (Trang 97)
w