Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 0 B √ π C π[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 2 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(1; 1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(0; −1; 2).
Câu 4 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 5 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a√3
a√2
√ 3
Câu 6 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
4;+∞) D (0; 1).
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x + y + 2z = 0 B (P) : x − y + 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y − 2z = 0.
Câu 9 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
Câu 11 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 12 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 13 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Trang 2Câu 14 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 15 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 4
5
1
1
2.
Câu 16 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = π1xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1
Câu 17 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 18 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 19 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 20 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 34 B |z|= √34 C |z|=
√ 34
√ 34
Câu 21 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 22 Những số nào sau đây vừa là số thực và vừa là số ảo?
A 0 và 1 B Chỉ có số 1 C Không có số nào D C.Truehỉ có số 0.
Câu 23 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B −1 ≤ m ≤ 0 C m ≥ 0 hoặc m ≤ −1 D m ≥ 1 hoặc m ≤ 0 Câu 24 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
11
29
13.
Câu 25 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 26 Mệnh đề nào sau đây sai?
A.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
B. R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
C.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
D.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(1; 4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(−1; −4; 4).
Câu 28 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= cos(2023x) B f (x)= 2023cos(2023x)
C f (x)= − 1
Câu 29 F(x) là một nguyên hàm của hàm số y= xex 2
Hàm số nào sau đây không phải là F(x)?
A F(x) = −1
2(2 − e
x 2
) B F(x) = 1
2e
x 2
+ 2 C F(x)= −1
2e
x 2
+ C D F(x) = 1
2(e
x 2
+ 5)
Trang 3Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A P(3; 1; 3) B M(−2; 1; −8) C Q(1; 2; −5) D N(4; 2; 1).
Câu 31 Giá trị củaR0
−1ex+1dxbằng
Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
A x − 2y+ 2z + 15 = 0 B x+ 2y + 2z + 15 = 0
C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0
Câu 33 BiếtR18 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
A.R8
4 f(x)= 1
C.R4
1 [4 f (x) − 2g(x)]= −2
Câu 34 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 36 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1 z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
1
√ 2
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2
|z|2− 42 C P = (|z| − 2)2
|z|2− 22
Câu 40 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 2 C |w|min = 3
2. D |w|min = 1
Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B z là số thuần ảo.
Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Trang 4Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v
A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 14; 15)
C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 13; 16)
Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
3.
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R (2x+ 1)2dx= (2x+ 1)3
2 + C
Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ 2n + 3
C log22250= 3mn+ n + 4
Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Trang 5HẾT