Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Công thức nào sai? A ∫ ax = ax ln a +C B ∫ cos x = sin x +C C ∫ sin x =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Công thức nào sai?
Câu 2 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường elip C Đường parabol D Đường tròn.
Câu 3 Kết quả nào đúng?
A.R sin2xcos x= −sin3x
C.R sin2xcos x= −cos2x sin x + C D.R sin2xcos x= sin3x
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; 21; 21) B C(6; −17; 21) C C(20; 15; 7) D C(8;21
2 ; 19).
Câu 5 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
Câu 6 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
3a
√ 5a
2a
√
a
√
5.
Câu 7 Bất đẳng thức nào sau đây là đúng?
C (√3 − 1)e < (√3 − 1)π D 3π < 2π
Câu 8 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A ∀m ∈ R B m < 3
2. C 1 < m , 4 D −4 < m < 1.
Câu 9 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
2
1
Câu 10 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(1; 1; 2) B I(0; 1; −2) C I(0; 1; 2) D I(0; −1; 2).
Câu 11 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a√6, S B = a
√
7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
Trang 2A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3.
C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3.
Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 14 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 15 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
4).
Câu 16 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã
cho có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2) C 1 (m2) D 3√3(m2)
Câu 17 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4).
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
4 −
ln 2
2 . C F(
π
4)= π
4 + ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 18 Hàm số nào sau đây đồng biến trên R?
Câu 19 Cho hình chóp đều S ABCD có đáy ABCD là hình vuông cạnh 2a, đường cao của hình chóp
bằng a Tính góc giữa hai mặt phẳng (S AC) và (S AB)
Câu 20 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
C y= 3x+ 1
Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R= 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất
Câu 22 Tính I =R1
0
3
√ 7x+ 1dx
A I = 20
8 .
Câu 23 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 24 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động
Câu 25 Cho lăng trụ đều ABC.A′
B′C′có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′và BC′
A.
√
5a
a
√
2a
√
√ 3a
2 .
Trang 3Câu 26 Cho tam giác ABC vuông tại A, AB= a, BC = 2a Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục AB
3
Câu 27 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Câu 28 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A logaxcó nghĩa với ∀x ∈ R B logaxn= log
a
1 n
x, (x > 0, n , 0)
C loga1= a và logaa= 0 D loga(xy)= logax.logay
Câu 29 Rút gọn biểu thức M= 1
logax + 1
loga2x+ + 1
logakx ta được:
A M= k(k+ 1)
3logax .
Câu 30 Cho hàm số f (x)= e
1
3x
3 −2x 2 +3x+1
Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)
B Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)
C Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)
D Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)
Câu 31 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R
√ 3
2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là h1 Tính tỉ số h1
h
A. 2π −
√
3
π − √3
2π − 3√3
√ 3
4 .
Câu 32 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 2a
2b
3
√
2π
2b
4a2b
4a2b 3
√ 2π
Câu 33 Cho
4 R
−1
f(x)dx= 10 vàR4
1
f(x)dx= 8 TínhR1
−1
f(x)dx
Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(4
3;
10
3 ;
16
5
3;
11
3 ;
17
7
3;
10
3 ;
31
2
3;
7
3;
21
3 ).
Câu 35 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 15
πa2√ 17
πa2√ 17
Câu 36 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Trang 4Câu 37 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 2 hoặc m < −1 B m > 1 C m < −2 D m > 1 hoặc m < −1
3.
Câu 38 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
A D = (−∞; −1] ∪ (1; +∞)
B D = (−∞; 0)
C D = (1; +∞)
Câu 39 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
Câu 40 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
2(x2− 1) ln 4. B y
(x2− 1)log4e. C y
(x2− 1) ln 4. D y
′ = √ 1
x2− 1 ln 4
Câu 41 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
400π√3
500π√3
125π√3
Câu 42 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
3
√ 5
√ 3
1
2.
Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m > −2 B −3 ≤ m ≤ 0 C −4 ≤ m ≤ −1 D m < 0.
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 46 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
2
5a
√ 3
5a
√ 3
5a
√ 2
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1
Trang 5Câu 49 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
HẾT