1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (544)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 122,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 2 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= −sin3x

Câu 3 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 4 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

3.

Câu 5 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 6 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC =

√ 3ab2

√ 3a2b

12 .

C VS.ABC = a

2 q

b2− √3a2

√ 3b2− a2

Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2 B m ≥ e−2 C m > e2 D m > 2e

Câu 8 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 3

3πR3 D πR3

Câu 9 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 10 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 < m < 2 B m= 2 C 0 < m < 2 D −2 ≤ m ≤ 2.

Câu 11 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 2

(3x − 1) ln 2. B y

′ = 6 3x − 1

ln 2

3x − 1

ln 2

(3x − 1) ln 2.

Câu 12 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Trang 2

Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 14 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −5 B f (−1)= 3 C f (−1)= −1 D f (−1)= −3

Câu 15 Cho hình phẳng (H) giới hạn bởi các đường y= x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

5 .

Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 17 Cho lăng trụ đều ABC.A′B′C′có đáy bằng a, AA′= 4√3a Thể tích khối lăng trụ đã cho là:

Câu 18 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

x −1 .

Câu 19 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R= 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất

Câu 20 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 21 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành

A V = π

Câu 22 Đồ thị hàm số y= (√3 − 1)xcó dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 23 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A bc > 0 B ad > 0 C ac < 0 D ab < 0

Câu 24 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

2> b√2 C a−√3 < b−√3 D. √5

a< √5

b

Câu 25 Kết quả nào đúng?

A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −cos2x sin x + C

C.R sin2xcos x= −sin3x

Câu 26 Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng có dạng hình lăng trụ tứ

giác đều không nắp, có thể tích là 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng sao cho tổng S của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất, S bằng

A 50√5dm2 B 125dm2 C 75dm2 D 106, 25dm2

Câu 27 Tập nghiệm của bất phương trình log4(3x

− 1).log 1

4

3x− 1

3

4 là:

Trang 3

Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình

hành

A (1; 1; 3) B (1; −2; −3) C (1; −1; 1) D (−1; 1; 1).

Câu 29 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 30 Cho

4 R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).

Độ dài đường cao AH của tứ diện ABCD là:

Câu 32 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 33 Tính tích phân I = Re

1

lnnx

x dx, (n > 1)

A I = 1

1

Câu 34 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (2; 14; 14) D 2→−u + 3−→v = (3; 14; 16)

Câu 35 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng

(ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

A 6a3√

3

Câu 36 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 1 = 0 B 2x+ y − 4z + 7 = 0

C −2x − y+ 4z − 8 = 0 D 2x+ y − 4z + 5 = 0

Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 38 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 39 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a√3

5a√3

5a√2

Câu 40 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3

√ 15

a3

√ 5

a3

√ 15

16 .

Câu 41 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

12.

Trang 4

Câu 42 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (1; 14; 15)

Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 45 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A ln 2+ 6π

1

5ln 2+ 6π

1

4ln 2+ 3π

2 .

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 47 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a

√ 3

5a

√ 2

5a

√ 3

Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 49 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 + 3 sin 3x)5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.

C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = 5x +cos3xln 5.

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 5 = 0 B 2x+ y − 4z + 1 = 0

C 2x+ y − 4z + 7 = 0 D −2x − y+ 4z − 8 = 0

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm