Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x − y + 2z + 5 =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 0; 5) B (0; −5; 0) C (0; 1; 0) D (0; 5; 0).
Câu 2 Hàm số nào sau đây đồng biến trên R?
Câu 3 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
R
y= 1
2.
Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 5 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
x −1 .
Câu 6 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
a
√ 5
5
√ 3a
2 .
Câu 7 Cho lăng trụ đều ABC.A′
B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 8 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A 1 < m , 4 B −4 < m < 1 C ∀m ∈ R D m < 3
2.
Câu 9 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 10 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và
−→
nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −
√ 3
2 Góc giữa hai mặt phẳng (P) và (Q) bằng.
Câu 11 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x) 2x .
Câu 12 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Trang 2Câu 13 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120 Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 14 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 15 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 16 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 17 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 18 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
3 . D |z|= √34
Câu 19 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 21 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 22 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √85 B |w|= 6√3 C |w|= √48 D |w|= 4√5
Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z là số thuần ảo B z= 1
Câu 24 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 25 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là3 và phần ảo là 2.
C Phần thực là −3 và phần ảo là−2 D Phần thực là 3 và phần ảo là 2i.
Câu 26 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =
1, tính tích phân I = R5
0 1+ f (x).
A I = 5
Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 1; 1) B (1; 1; 3) C (3; 3; −1) D (−1; −1; −3).
Câu 28 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
2x+ 1 + C.
Trang 3C.R f(x)dx= 1
2
√
Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; 0; −2) B C(1; 4; 4) C C(−1; −4; 4) D C(1; 0; 2).
Câu 30 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x)= sin2x B F(x)= −cos2x C F(x) = −1
2cos2x. D F(x)= −cos2x
Câu 31 Tích phân I = R02(2x − 1) có giá trị bằng:
Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (−3; −1; 4) B (3; 1; 4) C (−3; −1; −4) D (3; −1; −4).
Câu 34 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
2 < |z| < 3
2. C |z| <
1
2. D |z| > 2.
Câu 36 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 6
√ 5
√ 2
Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 1
2 < |z| < 3
5
2 < |z| < 7
3
2 < |z| < 2 D 2 < |z| < 5
2.
Câu 40 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Trang 4Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;
5 4
!
4
!
4;+∞
!
Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. √1
√
√ 2
Câu 43 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
2(x2− 1) ln 4. B y
(x2− 1)log4e. C y
x2− 1 ln 4
(x2− 1) ln 4.
Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
15
a3√ 15
a3√ 5
a3√ 15
Câu 46 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
√ 5
1
√ 15
10 .
Câu 47 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 6π
1
4ln 2+ 3π
1
5ln 2+ 6π
5 .
Câu 48 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
A P = 2 + 2(ln a)2
Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2
nhỏ nhất Tính tổng a+ b + c
Câu 50 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
32.
Trang 5HẾT