Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3;−1) Tìm tọa độ điểm M′đối[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1) B M′
(2; −3; −1) C M′
(2; 3; 1)
Câu 2 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a
√
2 > b√2 B a−√3 < b−√3 C. √5
a< √5
b D ea > eb
Câu 3 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
√ 3π
√
3.
Câu 4 Tính I =R1
0
3
√ 7x+ 1dx
A I = 60
8 .
Câu 5 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số nghịch biến trên R B Hàm số đồng biến trên R.
C Hàm số nghịch biến trên (0;+∞) D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
Câu 6 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
4 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 7 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2π√l2− R2 B 2πRl C πRl D π√l2− R2
Câu 8 Hàm số nào sau đây đồng biến trên R?
Câu 9 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 10 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 11 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 12 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; 2; 3) B.→−n = (1; −2; −1) C.→−n = (1; −2; 3) D.→−n = (1; 3; −2)
Trang 2Câu 14 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 15 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A 5x5+ sin x + C B x5− sin x+ C C 5x5− sin x+ C D x5+ sin x + C
Câu 16 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là−3 và phần ảo là −2i.
C Phần thực là −3 và phần ảo là−2 D Phần thực là3 và phần ảo là 2.
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 21 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực.
Câu 22 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 23 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 24 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009 B (1+ i)2018 = −21009i C (1+ i)2018 = −21009 D (1+ i)2018 = 21009i
Câu 26 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= −2023cos(2023x) B f (x)= cos(2023x)
C f (x)= − 1
Câu 27 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A 6x + y − z − 6 = 0 B x − y + z + 6 = 0 C x+ y − z − 3 = 0 D x+ y − z + 1 = 0
Câu 28 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R34 f(x)= 4 Tích phân R03 f(x) bằng
Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 1; 1) B (1; 1; 3) C (−1; −1; −3) D (3; 3; −1).
Trang 3Câu 30 Tích phân I = R2
0 (2x − 1) có giá trị bằng:
Câu 31 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là
A −2x + y − z − 4 = 0 B −2x + y − z + 1 = 0 C 2x + y − z − 4 = 0 D −2x + y − z + 4 = 0.
Câu 32 BiếtR8
1 f(x)= −2; R14 f(x)= 3; R14g(x)= 7 Mệnh đề nào sau đây sai?
A.R4
1 [4 f (x) − 2g(x)]= −2
C.R8
4 f(x)= 1
Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (−3; −1; −4) B (3; −1; −4) C (−3; −1; 4) D (3; 1; 4).
Câu 34 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là số thuần ảo B Phần thực của z là số âm.
Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 38 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
2.
Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 41 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
1
2.
Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Trang 4Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(2
3;
7
3;
21
4
3;
10
3 ;
16
7
3;
10
3 ;
31
5
3;
11
3 ;
17
3 ).
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A −4 ≤ m ≤ −1 B m < 0 C m > −2 D −3 ≤ m ≤ 0.
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 2 hoặc m < −1 B m > 1 hoặc m < −1
Câu 50 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Trang 5HẾT