Thể tích và diện tích xung quanh của hình nón lần lượt à Đáp án đúng: D Đáp án đúng: D Giải thích chi tiết: - Gọi là một nguyên hàm của trên khoảng , khi đó:... Đáp án đúng: A Giải thíc
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN MÔN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 011.
Đáp án đúng: A
Giải thích chi tiết:
Câu 2 Cho hình nón có thiết diện qua trục là tam giác đều cạnh 2a Thể tích và diện tích xung quanh của hình
nón lần lượt à
Đáp án đúng: D
Đáp án đúng: D
Giải thích chi tiết: - Gọi là một nguyên hàm của trên khoảng , khi đó:
- Với mọi , ta có:
Trang 2- Cho ta được:
- Cho ta được:
Đáp án đúng: A
Chọn
Câu 5 Hàm số là một nguyên hàm của hàm số nào dưới đây trên khoảng ?
Đáp án đúng: B
Trang 3Câu 6 Cho hàm số có liên tục trên nửa khoảng thỏa mãn
Đáp án đúng: A
Câu 7
tâm và tính bán kính của ?
Đáp án đúng: A
Câu 8 Tính diện tích của hình phẳng giới hạn bởi các đô thị
Đáp án đúng: A
Giải thích chi tiết: Tính diện tích của hình phẳng giới hạn bởi các đô thị
Lời giải
Ta có : Phương trình hoành độ giao điểm của hai đồ thị
Do đó :
Câu 9 Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số và các đường thẳng
bằng
Trang 4A B
Đáp án đúng: A
Giải thích chi tiết: Ta có phương trình hoành độ giao điểm của hai đồ thị là:
Khi đó diện tích hình phẳng cần tìm được tính bởi công thức:
Câu 10 Tính nguyên hàm của , đổi biến theo t = đa thức trong luỹ thừa( dạng đổi biến có chứa luỹ thừa)
Đáp án đúng: A
Câu 11
Một khối nón có diện tích xung quanh bằng và bán kính đáy Khi đó độ dài đường sinh là
Đáp án đúng: C
Câu 12 Khi quay hình chữ nhật ABCD xung quanh cạnh AB thì đường gấp khúc ABCD tạo thành
.
Ⓐ mặt trụ Ⓑ khối trụ Ⓒ lăng trụ .Ⓓ hình trụ
Đáp án đúng: D
là tập hợp tất cả các điểm trong không gian thỏa mãn Biết rằng là một đường tròn, đường tròn đó có bán kính bằng bao nhiêu?
Đáp án đúng: A
Giải thích chi tiết: • Gọi là tập hợp các điểm thỏa mãn yêu cầu bài toán
• Từ giả thiết:
Trang 5Suy ra quỹ tích điểm là đường tròn giao tuyến của mặt cầu tâm , và mặt cầu tâm
Đáp án đúng: B
với Giá trị của biểu thức bằng?
Đáp án đúng: D
Lấy nguyên hàm hai về ta được:
Trang 6Câu 16 Cho hàm số liên tục trên thỏa mãn điều kiện: và
Đáp án đúng: B
Câu 17 Cho là một nguyên hàm của hàm số với Tính
Đáp án đúng: B
Giải thích chi tiết: Đặt
Đặt
Suy ra
Đặt
Cho thay vào (*) ta được
Suy ra
Trang 7Vậy
Câu 18
Trong không gian , cho mặt cầu có tâm và đường kính bằng 8 Phương trình của mặt cầu là
Đáp án đúng: C
Câu 19
Đáp án đúng: C
Đặt
Câu 20
Đáp án đúng: B
Giải thích chi tiết:
Lời giải
Ta có
⏺
Trang 8Đổi cận:
Khi đó
Vậy
Câu 21
Trong không gian với hệ tọa độ Đường thẳng đi qua điểm nào sau sau đây?
Đáp án đúng: B
Giải thích chi tiết: Thay tọa độ của vào PTTS của ta được
không tồn tại t
Do đó,
Thay tọa độ của vào PTTS của ta được không tồn tại t
Do đó,
Thay tọa độ của vào PTTS của ta được không tồn tại t
Do đó,
Thay tọa độ của vào PTTS của ta được
là phân số tối giản Tính
Trang 9C D .
Đáp án đúng: C
Câu 23 Trong không gian với hệ toạ độ , cho , Khi đó có toạ độ là
Đáp án đúng: B
Câu 24
Trong không gian với hệ tọa độ cho ta, giác với tọa độ các đỉnh Biết
là tâm đường tròn nội tiếp và là trọng tâm tam giác , tính
Đáp án đúng: A
Giải thích chi tiết: Trong không gian với hệ tọa độ cho ta, giác với tọa độ các đỉnh
Biết là tâm đường tròn nội tiếp và là trọng tâm tam giác , tính
A B C D
Lời giải
Suy ra
Câu 25 Cho hàm số có đạo hàm không âm trên thỏa mãn với mọi và
Biết hãy chọn khẳng định đúng trong các khẳng định sau đây
Đáp án đúng: A
Trang 10Từ giả thiết ta có
Câu 26 Họ nguyên hàm của hàm số trên khoảng là:
C
Đáp án đúng: A
Hoặc Ta có:
Câu 27 Cắt hình nón đỉnh bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng
Gọi là dây cung của đường tròn đáy hình nón sao cho mặt phẳng tạo với mặt đáy một góc Tính diện tích tam giác
Đáp án đúng: D
Trang 11Giải thích chi tiết:
Gọi là tâm đường tròn đáy của hình nón
Gọi là giao điểm của và Suy ra và là trung điểm
Vậy góc giữa mặt phẳng và mặt phẳng đáy là góc hay
Trong vuông tại ta có
Trong vuông tại ta có
Vậy diện tích tam giác là
(đvdt)
Câu 28 Giá trị bằng
Đáp án đúng: C
Câu 29 : Cho ( và là các số nguyên) Khi đó giá trị của là
Trang 12Đáp án đúng: A
Câu 30 Cho hàm số là hàm số chẵn, liên tục trên đoạn , thỏa mãn Giá trị tích
Đáp án đúng: A
( vì là hàm số chẵn nên )
( vì là hàm số chẵn )
Câu 31 Cho hàm số f ( x) có đạo hàm liên tục trên đoạn [2;3], đồng thời f ( 2)=2, f ( 3)=5 Khi đó
∫
2
3
❑[ f′ ( x)− x]d x bằng
Đáp án đúng: B
Câu 32 Cho tứ diện Gọi và lần lượt là trung điểm của và Tìm giá trị của
thích hợp điền vào đẳng thức vectơ ?
Đáp án đúng: C
Giải thích chi tiết: Ta có
Suy ra
Câu 33 Cho Nếu đặt ta được tích phân mới là
Đáp án đúng: B
Trang 13Câu 34 Tích phân bằng
Đáp án đúng: C
Câu 35 Trong không gian với hệ tọa độ , cho tứ diện có tọa độ đỉnh , ,
, , Tìm tọa độ điểm để tứ diện là tứ diện đều Khi đó viết phương trình mặt cầu nội tiếp tứ diện
Đáp án đúng: B
Giải thích chi tiết: Trong không gian với hệ tọa độ , cho tứ diện có tọa độ đỉnh ,
, , , Tìm tọa độ điểm để tứ diện là tứ diện đều Khi đó viết phương trình mặt cầu nội tiếp tứ diện
Lời giải
Vì là tứ diện đều, nên tâm của mặt cầu nội tiếp tứ diện trùng với trọng tâm của tứ diện, ta có
là trọng tâm tam giác ,
Vậy phương trình mặt cầu cần tìm:
Trang 14A I=( x2+x)∨¿1e −∫
1
e
❑(x+1)dx¿ B I=x2ln x∨¿1e+∫
1
e
❑xdx¿
C I=x2ln x∨¿1e −∫
1
e
❑(x+1)dx¿ D I=( x2+x)ln x∨¿1e+∫
1
e
❑(x+1)dx¿ Đáp án đúng: D
Câu 37 Nếu là hai hàm số có đạo hàm liên tục trên Khẳng định nào sau đây là khẳng định đúng?
Đáp án đúng: C
Giải thích chi tiết: Theo phương pháp tính tích phân từng phần ta có: Nếu là hai hàm số có đạo hàm
Đáp án đúng: C
Câu 39 Trong không gian , cho ba điểm , và , mặt phẳng
và mặt cầu Mặt phẳng cắt mặt cầu theo giao tuyến là đường tròn Trên đường tròn lấy điểm , đặt Gọi , lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của Khi đó giá trị của biểu thức là
Đáp án đúng: D
Giải thích chi tiết: Mặt cầu có tâm , bán kính
Trang 15
Do đó
Gọi , lần lượt là hình chiếu vuông góc của và trên mặt phẳng Khi đó là tâm đường tròn
Suy ra đạt giá trị lớn nhất, giá trị nhỏ nhất khi lớn nhất, nhỏ nhất
Mặt phẳng có vectơ pháp tuyến
Phương trình đường thẳng là
Phương trình đường thẳng là
Câu 40 Với quan điểm "Đánh giá vì học tập", vai trò của giáo viên là
Đáp án đúng: C