1. Trang chủ
  2. » Tất cả

4 nhị thức newton câu hỏi

14 30 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nhị thức Newton - Câu hỏi
Thể loại Bài tập
Định dạng
Số trang 14
Dung lượng 563,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1 I LÝ THUYẾT TRỌNG TÂM Nhắc lại các hằng đẳng thức         0 1 2 2 2 3 3 2 2 3 1 2 3 3               a b a b a b a b a ab b a b a a b ab b Định nghĩa   0 1 1 1 1 0 n n n.

Trang 1

I LÝ THUYẾT TRỌNG TÂM

Nhắc lại các hằng đẳng thức

0

1

1

2

a b

a b a b

a b a ab b

a b a a b ab b

Định nghĩa

0

n

k

a b C a C ab CabC b C ab

Tính chất của Nhị thức Newton

1 Số các số hạng của công thức là n 1

2.Tổng số mũ của a và b trong mỗi số hạng luôn luôn bằng số mũ của nhị thức: nkkn

3 Số hạng tổng quát của nhị thức là: T k1C a n k n kb k

(Đó là số hạng thứ k+1 trong khai triển abn)

Tam giác pascal trong khai triển nhị thức

ab0 1

ab1 1 1

ab2 1 2 1

ab3 1 3 3 1

ab4 1 4 6 4 1

ab5 1 5 10 10 5 1

II CÁC DẠNG TOÁN THƯỜNG GẶP

DẠNG 1: XÁC ĐỊNH ĐIỀU KIỆN CỦA SỐ HẠNG THỎA MÃN YÊU CẦU CHO TRƯỚC

A Bài tập tự luận

Câu 1 Khai triển nhị thức Newton sau

STT Cho khai triển nhị

ĐA

Số hạng tổng quát Số hạng thứ k

1 3x 57 Tìm số hạng tổng

quát và số hạng thứ

4

1 7k3 k5 k k k

T Cx

2 1 5x 9 Tìm số hạng tổng

quát và số hạng thứ

5

 

1 9k 1 5 k k k k

tự

Bài 4 NHỊ THỨC NEWTON - CÂU HỎI

• Chương 2 TỔ HỢP - XÁC SUẤT

Trang 2

3 2 x 118 Tìm số hạng tổng

quát và số hạng thứ

9

 

18

k k

k

4 6xy6 Tìm số hạng tổng

quát và số hạng thứ

3

  6 6

1 6k 1 6k k k k

k

T C   xy

1

x x

Tìm số hạng tổng quát và số hạng thứ

7

  2 10

k

T Cx

6 2xy228 Tìm số hạng tổng

quát và số hạng thứ

25

1 28k 2 k k k k

T Cxy

 

7 2 x 4y30 Tìm số hạng tổng

quát và số hạng thứ

16

 

30

k k

k

2 3

2

2

x x

Tìm số hạng tổng quát và số hạng thứ

8

 

7 36

k k

k

Câu 2 Tìm hệ số của x8 trong khai triển

12

1 1

x

Câu 3 Tìm hệ số của 21

x trong khai triển 23x25

Câu 4 Viết 3 số hạng đầu tiên theo lũy thừa tăng dần của x của các đa thức sau a)

10

1

2

x

  b) 3 2x 8

Câu 5 Tìm số hạng thứ tư trong khai triển a2x20 theo lũy thừa tăng dần của x

Câu 6 Viết 4 số hạng đầu tiên theo lũy thừa tăng dần của x của các đa thức sau

a)  12

1 3x b)  9

1 2x c)

20

1 3

x

Câu 7 Tìm

a) Số hạng thứ 8 trong khai triển 1 2x 12

b) Số hạng thứ 6 trong khai triển

9

2 2

x

c) Số hạng thứ 12 trong khai triển 2x15

Câu 8 Tìm số hạng đứng giữa trong khai triển x3xy15

Câu 9 Tìm hệ số của:

1 Số hạng chứa x trong khai triển: 5 2x 112

2 Số hạng chứa x trong khai triển: 11

10

x x

3 Số hạng chứa x trong khai triển: 7  2 14

xx

4 Số hạng chứa x25.y10 trong khai triển:  3 15

xxy

Câu 10 Tìm hệ số của số hạng không chứa x trong khai triển sau:

1

12 2

4

1

x x

Trang 3

2

6

x

x

3

7 3

4

1

x x

Câu 11 Trong khai triển

10 3

2

1

2x x

  hãy tìm số hạng không phụ thuộc vào x

Câu 12 Tìm số hạng hữu tỷ của khai triển  6

3 15

Câu 13 Tìm hệ số của số hạng trong khai triển sau:

1 Tìm hệ số của x trong khai triển của biểu thức: 6 A2x111x217

2 Tìm hệ số của x trong khai triển của biểu thức: 3 Ax110x15

3 Khai triển P x 

dưới dạng: P x a0a x1 a x2 2 a x n n

a) Tìm hệ số a : 9 P x   1x91x101x11 1x14

b) Tìm hệ số a : 15 P x   1x2 1 x23 1 x3 20 1  x20

Câu 14 Cho khai triển:

10

10

1 2

Câu 15 Tìm hệ số của x trong khai triển đa thức của: 8 2 8

1 x 1 x

Câu 16 Khai triển đa thức    12 2 12

P x   xaa xa x  a x Tìm maxa a a0, 1, 2, ,a12

Câu 17 Tìm số hạng đứng giữa trong các khai triển sau:

a) x3xy21

b)

 

20 4

2 3

1

x x

xy

Câu 18 Tìm hệ số của số hạng không chứa x trong khai triển  

7 3

4

1

x

với x 0

Câu 19 Cho khai triển đa thức

10

1 2

Câu 20 Cho n số nguyên dương thỏa mãn 5C n n1C n3 Tìm số hạng chứa x5 trong khai triển nhị thức

niu tơn

14 2

1

14

nx

x x

B Bài tập trắc nghiệm

Câu 1 Số số hạng trong khai triển x 250 là

Câu 2 Có bao nhiêu số hạng trong khai triển nhị thức 2x 32018

A 2019 B 2017 C 2018 D 2020

Câu 3 Viết khai triển theo công thức nhị thức Niu-tơn xy5

A x55x y4 10x y3 210x y2 35xy4y5 B x55x y4 10x y3 210x y2 35xy4y5

Trang 4

C x55x y4 10x y3 210x y2 35xy4y5 D x55x y4 10x y3 210x y2 35xy4y5

Câu 4 Trong khai triển nhị thức Niu-tơn của (3 2 ) x 2019 có bao nhiêu số hạng?

A 2019 B 2018 C 2020 D 2021

Câu 5 Từ khai triển biểu thức x 110 thành đa thức Tổng các hệ số của đa

thức là

A 1023 B 512 C 1024 D 2048

Gọi S là tổng các hệ số trong khai triển thì ta có  10 10

Sf    

Câu 6 Từ khai triển biểu thức x 110 thành đa thức Tổng các hệ số của đa thức là

A 1023 B 512 C 1024 D 2048

Câu 7 Tính tổng các hệ số trong khai triển 1 2x 2018

A 1 B 1 C 2018D 2018

Câu 8 Khai triển ( 547 )124 Có bao nhiêu số hạng hữu tỉ trong khai triển trên?

Câu 9 Trong khai triển nhị thức newton củaP x( )( 23 x3)2018thành đa thức,có tất cả có bao nhiêu số

hạng có hệ số nguyên dương?

Câu 10 Trong khai triển  20 2 20

1 2 xaa xa x  a x Giá trị của a0a1a2 bằng

Câu 11 Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức 3 5 2019

3 5 ?

A 136 B 403 C 135 D 134

Câu 12 Trong khai triển của

2019

x y x y

, số hạng mà lũy thừa của x và y bằng nhau là số hạng

thứ bao nhiêu của khai triển?

A 1348 B 1346 C 1345 D 1347

Câu 13 Trong khai triển

9 2

8

x x

, số hạng không chứa x

Câu 14 Số hạng độc lập với x trong khai triển

8

x x

  là

A 1792 B 792 C 972 D 1972

Câu 15 Tìm số hạng không chứa x trong khai triển

12

3 1

x x

A 220B 220 C 924 D 924

Câu 16 Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức

30

2

x x

A 2 20 B 2 C 20 1030 C 2 C 10 3020 D C3020

Trang 5

Câu 17 Số hạng không chứa x trong khai triển

45 2

1

x x

A 5

45

45

C

45

45

C

Câu 18 Số hạng không chứa x trong khai triển

10

2

x x

  là

A C 105 B C105.25 C C105 D C105.25

Câu 19 Số hạng không chứa x trong khai triển

7 3

4

1

x x là:

Câu 20 Tìm số hạng không chứa x trong khai triển

6 2

1

2x x

,x 0

A 240 B 15 C 240 D 15

Câu 21 Số hạng không chứa x trong khai triển biểu thức

12 2 1

x

  

  là

A 924 B 495 C 495 D 924

Câu 22 Số hạng không chứa x trong khai triển

45 2

1

x x

A C1545 B C4530 C C455 D C1545

Câu 23 Tìm số hạng không chứa x trong khai triển

5 2 3

1

x x

Câu 24 Số hạng không chứa x trong khai triển

7 3

4

1

x

x

Câu 25 Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức

30

2

x x

  là

A 2 20 B 2 C 20 3010 C 2 C10 3020 D C3020

Câu 26 Cho khai triển  20 2

1 2x aa x a x a x Giá trị của a0a1a2a20 bằng:

Câu 27 Hệ số của số hạng chứa x trong khai triển nhị thức 7

12

2

x

x x

là:

A 376 B 264 C 264 D 260

Câu 28 Tìm hệ số của số hạng chứa x trong khai triển nhị thức 7

13

1

x x

Câu 29 Hệ số của x31 trong khai triển

40 2

1

x

A C 404 B C 402 C C 403 D C 405

Trang 6

Câu 30 Hệ số lớn nhất trong khai triển

4

4 4x

A 27

9

27

27

64

Câu 31 Cho biết hệ số của x trong khai triển 2 1 2 xn

bằng 180 Tìm n

Câu 32 Tìm hệ số h của số hạng chứa 5

x trong khai triển

7

x x

A h 84 B h 672 C h 560 D h 280

Câu 33 Hệ số của số hạng chứa x6trong khai triển Newton

15 2

2

x x

A 3640B 3640 C 455 D 1863680

Câu 34 Tìm hệ số của x y trong khai triển 25 10 x3xy15

Câu 35 Cho khai triển

6

2

x x

với x 0 Tìm hệ số của số hạng chứa 3

x trong khai triển trên

Câu 36 Cho khai triển

6

2

x x

với x 0 Tìm hệ số của số hạng chứa x3 trong khai triển trên

Câu 37 Biết hệ số của x2 trong khai triển của 1 3 xn là 90 Tìm n

A n 7 B n 6 C n 8 D n 5

Câu 38 Số hạng thứ 13 trong khai triển 2x15 bằng?

A 3640x13 B 3640x12 C 420x12 D 3640 Câu 39 Tìm số hạng chứa trong khai triển

9

1 2

x x

A 3 3

9

1

8C x

9

1

9

C x

9

C x

Câu 40 Tìm số hạng chứa x7 trong khai triển

13

1

x x

A C133 B C x133 7 C C x134 7 D C134

Câu 41 Tìm số hạng chứa x31 trong khai triển

40 2

1

x x

?

A C x 404 31 B C x4037 31 C C x4037 31 D C x403 31

Câu 42 Số hạng chứa x34 trong khai triển

40

1

x x

A 37 34

40

C x

40

C x C 2 34

40

C x D 4 34

40

C x

3

x

Trang 7

Câu 43 Biết hệ số của số hạng chứa x trong khai triển 2 1 4 xn là 3040 Số tự nhiên n bằng bao nhiêu?

Câu 44 Biết hệ số của x trong khai triển của 2 1 3 xn là 90 Tìm n

A n  5 B n  8 C n 6 D n 7

Câu 45 Cho biết hệ số của 2

x trong khai triển 1 2 xn bằng 180 Tìm n

A n 12 B n 14 C n  8 D n 10

Câu 46 Tìm hệ số của số hạng chứa x trong khai triển của biểu thức 10

5 3 2

2

3x x

A 810B 826 C 810 D 421

Câu 47 Tìm hệ số của số hạng chứa x trong khai triển 31

40 2

1

x x

A C4037 B 31

40

40

C

Câu 48 Trong khai triển

6

2

x x

, hệ số của 3 

0

x x  là:

Câu 49 Cho n là số tự nhiên thỏa mãn C n02.C1n2 2C n2 2  n C n n59049 Biết số hạng thứ 3 trong

khai triển Newton của 2 3 n

x x

  có giá trị bằng

81

2 n Khi đó giá trị của x bằng

Câu 50 Cho nhị thức 2 2 13

n

x x

, trong đó số nguyên dương n thỏa mãn 3

72

n

An Tìm số hạng chứa

5

x trong khai triển

A 2 C x6 104 5 B 2 C x5 105 5 C 2 C x7 103 5 D 2 C x6 107 5

Câu 51 Tìm số hạng không chứa x trong khai triển nhị thức Newton của 2 3

2

n

x x

  x 0, biết rằng

CCC  n Cn ( k

n

C là số tổ hợp chập k của n phần tử)

A 489888 B 49888 C 48988 D 4889888

Câu 52 Cho khai triển   1

1 3 x naa x  a x n n trong đó n  * và các hệ số thỏa mãn hệ thức

1

n n

a a

a     Tìm hệ số a i lớn nhất

A 1732104 B 3897234 C 4330260 D 3247695

Câu 53 Tìm hệ số của x6 trong khai triển

3 1 3

x x

  với x 0, biết n là số nguyên dương thỏa mãn

3C n nP 4A n

A 210 x6 B 210 C 120 x6 D 120

Câu 54 Tìm hệ số của số hạng chứa x trong khai triển 6 2 3

2

n

x x

  x 0, biết rằng 22 143 1

3

CCnk

n

C

là số tổ hợp chập k của n phần tử)

A 326592 B 3265922 C 3265592 D 32692

Trang 8

Câu 55 Tìm số hạng chứa x trong khai triển 26 7

4

1

n

x

x biết n là số nguyên dương thỏa mãn hệ thức

2 1 2 1  2n12 1

Câu 56 Với n là số tự nhiên thỏa mãn 6 2

n

CnA

   , hệ số của số hạng chứa x trong khai triển nhị 4

thức Niu-tơn của 2 3 n

x x

bằng

A 1972 B 786 C 1692 D 1792

Câu 57 Với n là số nguyên dương thỏa mãn C n1C n313n, hệ số của số hạng chứa x trong khai triển 5

của biểu thức 2 13

n

x x

Câu 58 Cho n là số nguyên dương thỏa mãn A n2 C n2C1n4n Hệ số của số hạng chứa 6 x của khai 9

triển biểu thức   2 3 n

P x x

x

  

A 18564 B 64152 C 192456 D 194265

Câu 59 Biết n là số nguyên dương thỏa mãn n1 n 2 78

C  C   , số hạng chứa x trong khai triển 8

x

x

A 101376x8 B 101376C 112640D 101376x 8

Câu 60 Với n là số nguyên dương thỏa mãn 3 2  

1

3C n 3A n 52 n1 Trong khai triển biểu thức

 3 2

xy , gọi T là số hạng mà tổng số mũ của k xy của số hạng đó bằng 34 Hệ số của T k

A 54912 B 1287 C 2574 D 41184

Câu 61 Cho n là số nguyên dương thỏa mãn 5C1nC n2  Tìm hệ số 5 a của x trong khai triển của biểu 4

thức 2 12

n

x x

A a 11520 B a 256 C a 45 D a 3360

Câu 62 Với n là số nguyên dương thỏa mãn 2 3

3A n nC n 40

  Hệ số của x trong khai triển 6

2

1 2

n

x x

A 1024 B 1024C 1042D 1042

Câu 63 Với n là số nguyên dương thoả mãn A n23C n1120, số hạng không chứa x trong khai triển của

biểu thức 4 3 n

x x

A 295245 B 245295 C 292545 D 259254

Câu 64 Tìm hệ số của số hạng chứa x8 trong khai triển nhị thức Niutơn của  

2

n

n x

x x

nguyên dương n thỏa mãn 3 2

50

CA

Trang 9

A 97

29

297

279

215

Câu 65 Tìm số hạng không chứa x trong khai triển nhị thức Newton của 2 2 3

n

x x

  x 0, biết rằng

1.C n2.C n3.C n  nC n n 256n ( k

n

C là số tổ hợp chập k của n phần tử)

A 489888 B 49888 C 48988 D 4889888

Câu 66 Giả sử có khai triển   2

1 2 x naa x a x  a x n n Tìm a biết 5 a0a1a271

A 672 B 672 C 627 D 627

Câu 67 Với n là số nguyên dương thỏa mãn điều kiện 2 3

10

AC  , tìm hệ số a của số hạng chứa 5 x5

trong khai triển 2

3

2 n

x x

  với x 0

A a 5 10 B a5 10x5 C a510x5 D a  5 10

Câu 68 Tìm hệ số của x trong khai triển 5 1 3 x2n biết 3 2

AA

A 61236 B 63216 C 61326 D 66321

Câu 69 Cho n là số nguyên dương thỏa mãn 0 1 1 2 2  

3n C n 3nC n3nC n  1n C n n 2048 Hệ số của

10

x trong khai triển x 2n là:

Câu 70 Trong khai triển 2 1

3

n

x x

  biết hệ số của

3

x là 34C Giá trị n5 n có thể nhận là

Câu 71 Hệ số của số hạng chứa x8 trong khai triển 5  

3

1

n

x

C  C   n là

A 1303 B 313 C 495 D 13129

Câu 72 Tìm hệ số của x4 trong khai triển nhị thức Newton

5

1 2

n

x x

với x 0, biết n là số tự nhiên lớn nhất thỏa mãn 5 4

2

18

AA

A 8064 B 3360 C 13440 D 15360

Câu 73 Tìm số hạng không chứa x trong khai triển 2 1 n

x x

  biết

AC

A 3003B 5005 C 5005 D 3003

Câu 74 Tìm hệ số của x trong khai triển thành đa thức của 5 2 3 x2n, biết n là số nguyên dương thỏa

mãn: C20n1C22n1C24n1 C22n n11024

A 2099529 B 2099520 C 1959552 D 1959552

Câu 75 Biết n là số nguyên dương thỏa mãn n 1 n 2 78

CC

  , số hạng chứa x8 trong khai triển

x

x

  là

A 101376x8 B 101376 C 112640 D 101376x8

Trang 10

Câu 76 Tìm số hạng chứa x trong khai triển 5 2 ,

n

x x

biết n là số tự nhiên thỏa mãn 3 4 2

2 3

CnC

Câu 77 Tìm hệ số không chứa x trong khai triển 3 2 n

x x

  , biết n là sô nguyên dương thỏa mãn

78

C  C  

A 112640 B 112643 C 112640 D 112643

Câu 78 Cho biểu thức

10

1

P

với x 0, x 1 Tìm số hạng không chứa x trong

khai triển Niu-tơn của P

A 200 B 160 C 210 D 100

Câu 79 Số hạng không chứa x trong khai triển  

9 2

2 ,

x

  

  x 0 bằng

A 5376 B 5376 C 672 D 672

Câu 80 Số hạng không chứa x trong khai triển của

14 3

4

2

x x

với x 0 là:

A 6 8

14

14

14

14

2 C

Câu 81 Tìm số hạng không chứa x trong khai triển của

11 11

5

1

x

  với x 0

A 485 B 238 C 165 D 525

Câu 82 Với n là số nguyên dương thỏa mãn 1 2

55

CC  , số hạng không chứa x trong khai triển của biểu thức 3

2

2 n

x x

bằng

Câu 83 Tìm số hạng không chứa x trong khai triển của 14 n

x x

x

  vớix  0, nếu biết rằngn là số

nguyên dương thỏa mãn C n2C n1 44

Câu 84 Tìm số hạng không chứa x trong khai triển của 14 n

x x x

  , với x 0, nếu biết rằng

44

CC

A 165 B 238 C 485 D 525

Câu 85 Số hạng không chứa x trong khai triển

2 3

3 2

n

x x

với x 0, biết n là số nguyên dương thỏa mãn C n32nA n21là:

A C1612.2 34 12 B C160.216 C C1612.2 34 12 D C1616.20

Câu 86 Với số nguyên dương n thỏa mãn C n2n27, trong khai triển 22

n

x x

  số hạng không chứa x

Ngày đăng: 25/11/2022, 00:34