HS biÕt phèi hîp c¸c kÜ n¨ng biÕn ®æi biÓu thøc chøa c¨n thøc bËc hai.. GV cho HS trong líp th¶o luËn.[r]
Trang 1 Nắm đợc định nghĩa, kí hiệu về căn bậc hai số học của 1 số không âm.
Biết đợc liên hệ của phép khai phơng với quan hệ thứ tự và dùng liên hệ này để sosánh các số
+ Giới thiệu chơng trình đại số 9
+ Nêu Y/c về sách vở dụng cụ và phơng pháp học của bộ môn
GV giới thiệu chơng I:
+ ở lớp 7 ta đã biết khái niệm về căn bậc hai (CBH) Trong chơng I này ta sẽ đi
sâu nghiên cứu
tính chất của nó, các phép biến đổi
+ CBH của 1 số a không âm là số x sao cho x2 = a.
+ Với số a dơng có đúng 2 CBH là 2 số
Trang 2GV giới thiệu định nghĩa nh SGK
GV đa ra chú ý và khắc sâu cho HS 2
chiều của định nghĩa:
của phép toán nào ?
GV cho HS làm ? 3 (Y/c HS đứng tại
HS làm ?1:
?1:
CBH của 9 là 3 và - 3CBH của
CBH của 0,25 là 0,5 và - 0,5CBH của 2 là 2 và - 2
HS làm ? 3
?3: CBH của 64 là 8 và - 8
CBH của 81 là 9 và - 9 CBH của 1,21 là 1,1 và - 1,1
Trang 3GV treo bảng phụ ghi bài tập lên bảng.
Bài 1: Trong các số sau số nào có CBH
3 ; 5; 1,5 ; - 4 ; 0 ; -
4
1
; 6.Bài 3 (SGK/6)
GV hớng dẫn phần a) x2 = 2 =>x là căn
bậc hai của 2
GV cho HS sử dụng máy tính để tính
Bài 5 (SGK/7)
+ Em hãy nêu cách giải bài tập này
GV cho HS nêu cách giải và lên bảng
trình bày
Hay 11> 3
VD 3: SGK/ 6.
?5 a) x> 1 => x > 1 x > 1b) x < 3 => x< 9 x < 9 (x0)Vậy 0 x < 9
Bài 1: Số có căn bậc hai là:
3 ; 5; 1,5 ; ; 0 ; 6
Bài 3 (SGK/6)
a) x2 = a =>x1; 2 1,414b) x2 = 3 =>x1; 2 1,732c) x2 = 3,5 =>x1; 2 1,871d) x2 = 4,12 =>x1; 2 2,030
Bài 5 (SGK/7)
GiảiDiện tích hình chữ nhật là:
3,5 14 = 49 (m2)Gọi cạnh của hình vuông là x (m) (x>0)
Ta có: x2 = 49
=>x = 7Vì x > 0 nên x = 7Vậy cạnh của hình vuông là 7 (m)
+ Ôn lại quy tắc tính giá trị tuyệt đối của 1 số
+ Đọc và nghiên cứu trớc bài 2:
Trang 4 Biết cách chứng minh định lí a2 a và biết vận dụng hằng đẳng thức A2 = A đểrút gọn biểu thức.
2 Kiểm tra bài cũ (8 Phút)
GV nêu Y/c kiểm tra:
HS1: Nêu ĐN căn bậc hai số học của số a 0 viết dới dạng kí hiệu
+ Khẳng định sau đúng hay sai:
Trang 5Vậy Axác định hay có nghĩa khi A
lấy giá tri không âm
A xác định (hay có nghĩa) khi A 0
Để chứng minh CBHSH của a2 bằng giá
trị tuyệt đối của a ta cần chứng minh
+ Nếu a < 0 thì a = - a
=> a 2 = (- a)2 = aVậy a 2 = a2 Với a
Trang 6GV Nêu câu hỏi:
Axác định (hay có nghĩa) khi nào ?
x = 3Nhóm 2:
b) x2 = 8 x = 8 x = 8c) 2
Trang 76 Kiểm tra bài cũ 8’
GV nêu Y/c kiểm tra:
HS1: Nêu điều kiện để Acó nghĩa
+ Chữa bài tập 12 a;b (SGK / 11)
b) 3 x 4 có nghĩa -3x + 4 0
-3x -4 x
3 4
Trang 8GV: C©u d ta thùc hiÖn c¸c phÐp tÝnh díi
c¨n råi míi khai ph¬ng
GV cho HS lªn b¶ng ch÷a bµi tËp 12
a) 16 25+ 196 : 49= 4 5 + 14: 7
= 22b)36: 2 3 3 18 - 169 = 36: 18 2
= 36: 18 – 13 = -11c) 81 9 3
1+ x2 1 víi xVËy 1 x cã nghÜa víi x
Bµi 13 (SGK/ 11).
Rót gän biÓu thøc
a.)2 a2 - 5a víi a < 0
2 a2 - 5a = 2 a - 5a = -2a – 5a = -7ab.) 25a2 + 3a víi a 0
25a2 + 3a = 5a + 3a = 5a + 3a = 8a
Trang 9? Em hãy phân tích đa về dạng bình
ph-ơng của 1 hiệu
GV cho HS hoạt động nhóm làm bài
GV cho HS hoạt động nhóm làm bài tập
Bài 15 (SGK/ 11).
Giải phơng trình:
a.)x2 – 5 = 0 x2 = 5 x1;2 = 5
b.)x2 - 2 11x + 11 = 0 2
11
x = 0 x - 11 = 0 x = 11
4 Củng cố (từng phần)
5 Hớng dẫn về nhà 2’
+ Ôn lại các kiến thức của bài 1 và bài 2
+ Luyện tập lại 1 số dạng bài tập nh tìm ĐK để biểu thức có nghĩa, rút gọn biểu thức, phân tích đa thức thành nhân tử, giải phơng trình
+Làm bài tập còn lại ở SGKvà SBT
+ Đọc và nghiên cứu trớc bài 3: “Liên hệ giữa phép nhân và phép khai phơng”
V Rút kinh nghiệm
Trang 10 bảng phụ ghi sẵn định lí, quy tắc khai phơng 1 tích và nhân các căn thức bậc 2, chú
ý và bài tập kiểm tra
Iv – Tổ chức hoạt động dạy – học
1 ổn định lớp 1’
2 Kiểm tra bài cũ :5’
GV nêu Y/c kiểm tra đã ghi sẵn trên bảng phụ
Tìm các câu đúng (Đ) sai (S) trong các câu sau:
Trang 11GV: Đây chỉ là 1 trờng hợp cụ thể Để
có dạng tổng quát ta phải chứng minh
? Em hãy cho biết định lí trên chứng
minh dựa trên cơ sở nào ?
GV: Dựa vào nội dung định lí cho
phép ta suy theo 2 chiều ngợc nhau cụ
thể là 2 quy tắc sau:
+ Quy tắc khai phơng 1 tích ( Chiều từ
trái sang phải)
biến đổi biểu thức dới dấu căn về tích
của các thừa số viết đợc dới dạng bình
*Định lí: với a0; b 0 ta có :
b a b
a
2 - áp dụng:
1 - Quy tắc khai phơng 1 tích (SGK/13) VD1: Tính
a.) 49 1 , 44 25 49 1 , 44 25
= 7 1,2 5 = 42b.) 810 40 81 10 40 81 4 100
= 81 4 100 = 9 2 10 = 180
?2: a.) 0 , 16 0 , 64 225 0 , 16 0 , 64 225
Trang 12? Viết định lí dới dạng tổng quát.
? Phát biểu quy tắc khai phơng 1 tích
= 5 6 10 = 300
2 - Quy tắc nhân các căn bậc hai.
VD2: Tính
a.) 5 20= 5 20 100 = 10b.) 1 , 3 52 10 = 1 , 3 52 10
= 2 10 2 36 4 , 9 2 2 36 49
= 2 6 7 = 84
*Chú ý: Với A 0; B 0 ta có :
B A B
3 12
.
3a a a a a = 6a2
b.) 2a 32ab2 64 a2 b2 = 8ab ( Vì a0; b 0)
+ Với a0; b 0 ta có: a b a. b
+ Với A 0; B 0 ta có :
B A B
Trang 13a ( Víi a>b)
2 4
1
b a a b
= 2 2 2
1
b a a
Trang 14III - đồ dùng dạy học
Bảng phụ ghi các định lí, quy tắc đã học và các bài tập
IV – Tổ chức hoạt động dạy – học.
1 ổn định lớp :1’
2 Kiểm tra bài cũ : 8’
GV nêu Y/c kiểm tra:
HS1: Phát biểu định lí liên hệ giữa phép nhân và phép khai phơng
GV đa ra bài 22 (a; b) (SGK/ 15)
? Nhìn vào đầu bài em có nhận xét gì
về các biểu thức dới dấu căn ?
? Em hãy biến đổi hằng đẳng thức rồi
4 x x Tại x = - 2Làm tròn đến số thập phân thứ 3
GV hớng dẫn HS rút gọn rồi mới thay
x vào để tính giá trị của A
2 số nghịch đảo của nhau
Trang 15Tìm ĐK của x để biểu thức sau có
nghĩa và biến đổi chúng về dạng tích
*Biến đổi biểu thức:
+ Xem lại các bài tập đã chữa
+ Đọc và nghiên cứu trớc bài 4: “ Liên hệ giữa phép chia và phép khai phơng”
V Rút kinh nghiệm
Trang 16 Có kĩ năng sử dụng quy tắc khai phơng 1 thơng và chia 2 căn bậc hai trong tính toán
và biến đổi biểu thức
2 Kiểm tra bài cũ: 5’
GV nêu Y/c kiểm tra:
Trang 17GV: Đây chỉ là 1 trờng hợp cụ thể Để
có dạng tổng quát ta phải chứng minh
GV: Dựa vào nội dung định lí cho phép
ta suy theo 2 chiều ngợc nhau cụ thể là
2 quy tắc sau:
+ Quy tắc khai phơng 1 thơng ( Chiều
từ trái sang phải)
+ Quy tắc chia 2 căn bậc hai
( Chiều từ phải sang trái)
25
16
=
5 4
Ta có:
a b
a b
Vậy
b
a
là CBHSH
b.)
36
25 : 16
10
9 6
5 : 4
3 36
25 : 16
225 256
225
Trang 18196 10000
196 0196
4 9 13
4 13 117
52 117
b.)
9 81 162
2 162
64 25
81 6
, 1
1 , 8
y y
x x
.
4
2 4
Trang 192 KiÓm tra bµi cò 8’
GV nªu Y/c kiÓm tra:
Trang 209’
5’
Dạng 1: Tính giá trị của biểu thức.
GV đa ra bài 32.(a;d) (SGK/ 19)
GV cho 2HS lên bảng chữa
a.) A = 0 , 01
9
4 5 16
4 1
GV đa hỗn số về dạng phân số rồi tính
a.) D = 22 22
384 457
76 149
khẳng định lại các quy tắc khai phơng
Dạng 1: Tính giá trị của biểu thức Bài 32 (SGK/19): Tính.
a.) A =
24
7 10
1 3
7 4
5 100
1 9
49 16
457 384 457
76 149 76 149
3 3
ab
ab b
Trang 211 thơng và hằng đẳng thức A A
Hoạt động 2: Giải bài tập nâng cao.
( 8 Phút)
GV đa ra bài 43.(a) (SBT/10)
Tìm x thoả mãn điều kiện
1
3 2
x x
là gì ? Hãy nêu cụ thể
GV cho 2 HS lên bảng giải với 2 trờng
hợp trên
Vậy với ĐK nào của x thì
1
3 2
x x
b
a b
2 3
2x – 3 0 và x – 1 < 0 x < 1
Vậy điều kiện là: x
+ Xem lại các bài tập đã giải
Làm tiếp các bài tập còn lại trong SGK và SBT
V Rút kinh nghiệm
Tiết 8
Trang 23lµ sè 6
=>6,253 + 0,006 = 6,259 VËy 39 , 18 6,259
?1:
a.) 9 , 11 3 , 018
b.) 39 , 82 6 , 311
2 - T×m c¨n bËc hai cña mét sè lín h¬n 100.
VD3: T×m 1680
1680 = 100 16,8VËy 1680 = 100 16 , 8 = 10 16 , 8
VËy 0 , 00168 = 16 , 8 : 10000
4,009 : 100 = 40,09
00168 ,
Trang 24biết ( Dùng máy tính để kiểm tra lại
các kết quả trong bài)
* Luyện tập
Kết quả:
9 ,
911 30,19
91190 301,9
09119 ,
0 0,3019
0009119 ,
Trang 256 Kiểm tra bài cũ 8’
GV nêu Y/c kiểm tra:
Dùng bảng căn bậc hai để tính nghiệm gần đúng của mỗi phơng trình sau:
Tg Hoạt động của GV Nội dung tri trình tự kiến thức
12 Hoạt động 2: Tìm hiểu cách đa thừa số
Trang 26phép biến đổi a2b= a b Phép biến
đổi này gọi là phép đa thừa số ra ngoài
GV: Đôi khi phải biến đổi biểu thức dới
dấu căn về dạng thích hợp rồi mới thực
hiện
b.) 20 Ta phân tích số 20 = 4 5
GV: Một trong những ứng dụng của
phép đa thừa số ra ngoài dấu căn là rút
gọn biểu thức ( Hay còn gọi là cộng trừ
Thừa số a đợc đa ra ngoài dấu căn
Đẳng thức ở ?1 cho ta thực hiện phép biến
đổi a2b = a b Phép biến đổi này gọi là phép đa thừa số ra ngoài dấu căn
?2: Rút gọn biểu thức.
a) 2 8 50 2 4 2 25 2
= 22 25 28 2b) 4 3 27 45 4 3 9 3 9 5
Trang 27GV: Phép đa thừa số ra ngoài dấu căn là
phép biến đổi ngợc của phép đa thừa số
vào trong dấu căn
GV đa tổng quát ở SGK lên bảng phụ
GV đa VD4 lên bảng phụ Y/c HS tự
nghiên cứu VD4 và làm ?4
GV: Phép đa thừa số ra ngoài dấu căn và
phép đa thừa số vào trong dấu căn còn có
Trang 28HS củng cố các kiến thức về Biến đổi đơn giản biểu thức chứa căn bậc hai đa thừa
số ra ngoài dấu căn và đa thừa số vào trong dấu căn
Kiểm tra bài cũ: 5’
GV nêu Y/c kiểm tra:
HS1: Viết dạng tổng quát phép đa thừa số ra ngoài dấu căn
HS2: Viết dạng tổng quát phép đa thừa số vào trong dấu căn
Trang 29x
= x – y(Víi x;y > 0)
y x y x
y x y x
2 2
2 3 2 2
3 2
y x y
xy
= x y . x y x2 y2 = x – y
Trang 30x x x
= x + x + 1
Bµi 65 (SBT/13) T×m x biÕt:
a) 25x = 35 5 x 35 x 7
x = 49b) 4x 162 2 x 162 x 81
x 6561
Mµ x 0VËy 0 x 6561
Trang 312 Có biểu thức lấy căn là biểu thức
nào ? Mẫu là bao nhiêu ?
HS: Để khử mẫu của biểu thức lấy căn
ta phải biến đổi biểu thức sao cho mẫu
của biểu thức đó trở thành bình phơng
của 1 số hoặc bình phơng của 1 biểu
thức, rồi khai phơng mẫu đa ra ngoài
dấu căn
GV cho 1 HS lên bảng trình bày
+ Qua VD1 em hãy nêu rõ cách làm để
khử mẫu của biểu thức lấy căn
GV đa ra dạng tổng quát trên bảng phụ
Với A; B là biểu thức A.B 0 và
B 0
Ta có:
B
AB B
6 3
3 2
ab b
b a
7
35 7
35 7
7 5
A
?1: Khử mẫu của biểu thức lấy căn.
Trang 3213
+ Y/c HS trong lớp nhận xét
Hoạt động 3: Trục căn thức ở mẫu
GV: Khi biểu thức có chứa căn thức ở
mẫu, việc biến đổi làm mất căn ở mẫu
gọi là trục căn thức ở mẫu
5 4 5
5 4 5
15 5 125
25 5 3 125
125 3 125
2 3 2
3
a
a a
2 10 8 3
2 4 5 8 3
8 5 8 3
b b
2 2
3 10 25 3
2 5 3 2 5
3 2 5 5 3
2 5
25
a a a a
a a a
1
1 2 1
6
b a
b a a
4
100
6 6
100
1
2
Trang 33Bµi 48 (SGK/29) Khö mÉu cña biÓu
10 5 10
10 5
HS4: b) x 1 y =
x y x y
y x
=
y x
y x
Trang 34GV nªu Y/c kiÓm tra:
HS1: Khö mÉu cña biÓu thøc lÊy
d)
b a
ab a
2 2
1
GV cho 2 HS lªn b¶ng tr×nh bµy bµi
Bµi 54 (SGK/30)
a) 2
3 2
3 2 2
= 3 2 3 2 3 3 2 2
d)
b a
ab a
a b b a b a a a
= a
b a
b a a b
a
a b a a
ab a
b a
b a a
2 2
2 1
1 2 2
D¹ng 2: Ph©n tÝch thµnh nh©n tö.
Bµi 55 (SGK/30) Ph©n tÝch thµnh nh©n
tö
( Víi a; b; x; y lµ c¸c sè kh«ng ©m)KÕt qu¶ nhãm:
a) abb a a 1 = b a a 1 a 1
Trang 35GV cho HS hoạt động nhóm để giải
GV gọi đại diện nhóm lên bảng trình
bày lời giải
+ Hãy nhân mỗi biểu thức với biểu thức
liên hợp của nó rồi biểu thị biểu thức đã
25x x Khi x bằng:
(A) 1 ; (B) 3 ; (C) 9 ; (D) 81
Hãy chọn câu trả lời đúng
+ Em hãy giải thích vì sao x = 81 ?
GV cho HS hoạt động nhóm để giải
GV cho đại diện nhóm lên bảng giải
1
(1)
( 2004 2003).( 2004 2003) = 1
2004 2003 =
2003 2004
1
(2)
Mà 2005 2004 > 2004 2003 (3)
Trang 36 x =
3
3 4
Phát hiện vấn đề và giải quyết vấn đề
iii – đồ dùng dạy học(chuẩn bị)
GV: Bảng phụ ghi lại các phép biến đổi căn thức bậc hai đã học, các bài giải mẫu, bài kiểm tra, đề bài
HS: Ôn tập các phép biến đổi căn thức bậc hai đã học
iv – Tổ chức hoạt động dạy – học.
ổn định lớp 1’
Kiểm tra bài cũ 7’
GV nêu Y/c kiểm tra trên bảng phụ:
HS1: Điền vào chỗ ( ) để hoàn thành các công thức
a) A2 = b) A B =
Với A ; B
Trang 375 5 5 5
5 5
Tg Hoạt động của GV - HS Nội dung trình tự kiến thức
15 Hoạt động 1: Giải bài tập
( 30 Phút)
GV: Trên cơ sở các phép biến đổi căn thức
bậc hai đã học Ta đi phối hợp để rút gọn
các biểu thức chứa căn thức bậc hai
GV: Đa VD1 trên bảng phụ:
4 6
a a a a
( Với a > 0)
GV: + Ban đầu ta cần thực hiện phép biến
đổi nào ? Em hãy thực hiện
HS: Ta cần đa thừa số ra ngoài dấu căn và
khử mẫu của biểu thức lấy căn
GV cho HS làm ?1.
Rút gọn : 3 5a 20a 4 45a a
( Với a 0 )
+ Y/c 1 HS lên bảng trình bày
GV cho HS trong lớp thảo luận
GV cho HS hoạt động nhóm để giải
Bài 58 (a;b) (SGK/59) : Rút gọn:
2
1 5
GV cho đại diện nhóm lên bảng trình bày
GV: Đa VD2 cả phần đề bài và lời giải trên
bảng phụ
VD1:
5
4 4
6
a a a
= 5 a 3 a 2 a 5 = 6 a 5
?1: Rút gọn :
a a a
a 20 4 45 5
1
5 5 4 2
1 5
1
= 3 5
b) 4 , 5 12 , 5 2
1
2 2
2 25 2
2 9 2
2
Trang 38b b a
+ Y/c cả lớp thảo luận
GV: Đa VD3 cả phần đề bài và lời giải trên
bảng phụ
+ Y/c HS đọc và nghiên cứu VD3 và trả lời
câu hỏi
+ ở VD3 để rút gọn P ta phải làm gì?
+ Để rút gọn P ta phải quy đồng mẫu thức
rồi rút gọn trong ngoặc đơn trớc, sau đó sẽ
1
3 2 2
1
2 9
VD2:
?2: Chứng minh đẳng thức.
ab b
a
b b a a
a 3 3
b a
b b a a
a
b a
b ab a
b a
= x - 3 ( Với x 3)b)
a
a a
1
1
1 1
= 1 + a + a (Với a 0 ; a 1)
Bài 60 (SGK/ 33)
a) B =
Trang 39b)B = 16 ( Với x - 1)
Tiếp tục rèn luyện kĩ năng rút gọn biểu thức có chứa căn thức bậc hai Chú ý tìm
điều kiện xác định của căn thức, của biểu thức
Bảng phụ ghi sẵn bài tập
HS: Ôn tập các phép biến đổi căn thức bậc hai đã học
Trang 40iv – Tổ chức hoạt động dạy – học
ổn định lớp 1’
Kiểm tra bài cũ 7’
GV nêu Y/c kiểm tra:
Tg Hoạt động của GV - HS Nội dung kiến thức cần khắc sâu
35 Hoạt động 2: Giải bài tập (35 Phút)
ngoài dấu căn, thực hiện các phép biến
đổi biểu thức chứa căn
GV đa ra bài 65 (SGK/34)
a) Rút gọn biểu thức:
M =
1 2
1 :
1
1 1
a a
( Với a > 0 ; a 1)
b)So sánh giá trị của M với 1
GV cho HS hoạt động nhóm để giải
Cho đại diện nhóm lên bảng trình bày
a
a a
Luyện tập Dạng 1: Rút gọn biểu thức.
Bài 62 (SGK/33) Rút gọn:
a)
3
1 1 5 11
33 75 2 48 2
33 3 25 2 3 16 2
3
10 3 3 10 3
3 17
3
2 2 5 , 4 60 6 , 1
3
8 5 , 4 96 6
3
3 2 4 2
9 6 16 6
1
1 1
a a
M =
a a
a a
a
1
1
a
a a
1 1 1
Trang 41GV gợi ý: Biến đổi VT sao cho x nằm
hết trong bình phơng 1 tổng, hoặc khai
1 :
1 1
1
a
a a
a a
GV cho các nhóm làm trong khoảng 5
phút rồi cho đại diện nhóm lên bảng
3 20
1 1
1 1
a a
a
a a a
Bài 82 (SBT/15)
VP = x2 + 2
4
1 2
3 2
3
= x2 + 3x +1 ( =
VT )
Dạng 3: Tổng hợp Bài tập:
: 1
a a
a a
a a
Q =
a a
a a
2 3
1 2
1
a - 2 = - 3 a 4 a = 2 a =
2
1
a =
4 1
( TMĐK a > 0 ; a 1; a 4)c) Q > 0
3 20
2 x 5 3 x 5 4 x 5 6
3 x 5 6 x 5 2
x + 5 = 4 x = -1 ( TMĐK)
Trang 424 Củng cố (từng phần)
5.Hớng dẫn về nhà
.(2 Phút)
+ Làm các bài tập còn lại ở SGK và SBT
+ Ôn lại ĐN căn bậc hai, các định lí và quy tắc đã học
+ Đọc và nghiên cứu trớc bài 9: “Căn bậc ba”
+ Tiết sau Y/c mang máy tính bỏ túi và bảng số
Trang 43HS đợc giới thiệu cách tìm căn bậc ba bằng bảng số và máy tính bỏ túi.
Bảng phụ ghi định nghĩa, nhận xét và bài tập
Máy tính CASIO fx 220 và bảng số với 4 chữ số thập phân
2 – Học sinh:
Ôn tập định nghĩa và tính chất của căn bậc hai
Máy tính CASIO fx 220 và bảng số với 4 chữ số thập phân
IV – Tổ chức hoạt động dạy – học
1 ổn định lớp 1’
1: Kiểm tra (5 Phút)
GV nêu Y/c kiểm tra:
+ Nêu định nghĩa căn bậc hai của 1 số a không âm
+ Với a > 0 , a = 0 mỗi số có mấy căn bậc hai ?
Hoạt động 1: Xây dựng khái niệm căn
Theo bài ra ta có phơng trình: V = x3
Hay 64 = x3 => x = 4 ( Vì 43 = 64)Căn bậc ba của 1 số a là 1 số x sao cho
x3 = a
Căn bậc ba của 8 là 2 ( Vì 23 = 8)Căn bậc ba của - 8 là - 2 ( Vì (- 2)3 = - 8)Căn bậc ba của 0 là 0 ( Vì 03 = 0)
Căn bậc ba của - 1 là - 1 ( Vì (- 1)3 = - 1)nhận xét:
*Mỗi số a đều có duy nhất 1 căn bậc ba.+ Căn bậc ba của số dơng là số dơng.+ Căn bậc ba của số âm là số âm
+ Căn bậc ba của số 0 là 0
+ Phép tìm căn bậc ba của 1 số gọi là phép khai căn bậc ba