1. Trang chủ
  2. » Giáo án - Bài giảng

BT PT BPT MU LOGARIT

4 488 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề BT PT BPT Mu Logarit
Trường học Trường Đại Học
Chuyên ngành Toán học
Thể loại Bài tập
Thành phố Hà Nội
Định dạng
Số trang 4
Dung lượng 289 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Bài 1) Tìm tập xác định và tính đạo hàm của hàm số

a) y = x log 5x

2

2

2

6

+

2 -3x +2) c)

5 4

3

2 + +

=

x x y

Bài 2) Rút gọn biểu thức A = log527.log23.log95.log481 b) B = 6 4

1

6 216 log 6 log

2 1 36

+ +

Bài 3) Giải các phương trình và bất phương trình sau:

a) 42x – 6.22x + 5 = 0 b) lg(x2-3x+5)=lg(4x-7)

c) log2x +log2x8 < 4 d) 10

2

) 3

1 ( ) 3

1 ( x

Bài 4) Tìm tập xác định và tính đạo hàm của hàm số y = ln 5x+ 25 -e x

1 Bài 5) Rút gọn biểu thức A = log616.log325.log56.log49 b) B = log 8 log 32

2

1

64 4

Bài 6) Giải các phương trình và bất phương trình sau:

a) ln23x + 2ln3x = 15 b) 6.9x -13.6x +6.4x = 0 c) 0

2

1 log

2 xx+ ≥ d) ( 3 − 1 )x <( 3 + 1)

3

7

log log log A

log

A

Bài 8) Giải các phương trình và bất phương trình sau:

a) log2 x+log4x+log16x=7 b) 4.81x + 45x-3.25x = 0 c) 2

1 0 2

log x log x− + ≥

Bài 9) Giải các phương trình và bất phương trình sau:

7

6

x

4x 6 2x 8 0

.

+ − + + = c) 9x +4 3 x − ≤5 0 d) log (x+ 1)≤ log2(2 −x)

2

1 e) 7 3x+1 - 5x+2 = 3x+4 - 5x+3 f) log (2 ) 8log (2 ) 5

4 1

2

2 −x − −x ≥ h 3 logx4 + 2 log4x4 + 3 log16x4 ≤ 0 Bài 10) Giải các phương trình và bất phương trình sau:

c) 8 16 x +25x −6 20 x ≤0 d)3x+1 + 3x-2 - 3x-3 + 3x-4 = 750

e) log log 2 0

4 1 2

2

1 x+ x <

f

3

2 4 5 12 5

5 7 4 1

+

x

x

2 log

1 log

2 2

log

2

2

x

x + x >

Bài 11) Giải các phương trình sau

1 4.4x 33.2x 8 0

- + = ; 2 2

log x - 6 log x - 10=0;

8

log x - 1 - 6 log x - 2 = +1 log 4- x

4 6x+ 6x+1 = 2x+ 2x+1 + 2x+2

Giải bất phương trình sau

Trang 2

1.( 3) 1

27

x

< ; 2 log x 32( + ≥ +) 1 log x 12( − )

3

10

29 5

2 2

5 1 >

 +

4 3 logx4 + 2 log4x4 + 3 log16x4 ≤ 0 Bài 12) Giải các phương trình sau:

a/ 3x+1 + 2.3-x = 7 b/ log2(x2-3) – log2(6x – 10) + 1= 0 c/ 4log9x + 2 = log 3( 2x+ 3 )

Bài 13): Giải các bất phương trình sau:

3

1

(

2

9x2− 2x − 2xx2 ≤

b/ log ( 2 2 1 ) 2

Bài 14) Giải các phương trình sau:

a/ 32x+1 -9.3x + 6 = 0 b/ log2(x2-2x-8) =1 - log ( 2)

2

1 x+ c/ 4log9x + 2 = log 3( 2x+ 3 )

Bài 15) Giải các bất phương trình sau:

a/

1

2

1 12 8

4

+

2

1 2

Bài 16) Giải các phương trình sau:

a/ 25x – 5.5x + 6 = 0 b/ log3(x+1) – 5log3(x+1) =-6

c/ 4log9x + 2 = log 3( 2x+ 3 )

Bài 17) Giải các bất phương trình sau:

3

1

(

2

9x2− 2x − 2xx2 ≤

b/ log (2 2 1) 2

2

1 x +x+ ≥ c)  ( − )>

3

Bài 18) Giải các phương trình sau:

a/ 7x + 2.71-x – 9 = 0 b/ 2log2x – 14log4x + 3 = 0 c/ 4log9x + 2 = log 3( 2x+ 3 )

Bài 19) Giải các bất phương trình sau:

a/ 3 2x+ 2 − 2 6x − 7 4x ≥ 0 b/ log ( 6 8) 2log5( 4) 0

2 5

1 1

1

9 4 6

5

4

9

<

+

Bài 20) Giải các phương trình sau:

a) 4x−2x+ 2− =5 0 b) log (2 x+ +2) log (32 x− =4) 3

c) 3x+3x+1+3x+2=5x+5x+1+5x+2

Bài 21) Giải các bất phương trình sau:

log (4x− >3) log (3x+2) b) 2 2 1

2

16

x

xx  

3

+

+

x x

Bài 22) Giải các phương trình sau:

a) 9x−3x+ 1− =4 0 b) log (23 x− +7) log (3 x− =2) 2

c) log log log ( )3 4 3

3 3 3 1

Bài 23) Giải các bất phương trình sau:

log (3x− >2) log (2x+3) b) 2 2 1

3

27

x

xx  

≤  ÷  c) 25x+ 1 + 9x+ 1 ≥ 34 15x

Bài 24) Giải các phương trình sau:

a) 16x−4x+ 1− =5 0 b) log (2 x+ +2) log (32 x− =4) 3

Trang 3

c) log log log8 3 5

16 1

Bài 25) Giải các bất phương trình sau:

log (4x− >3) log (3x+2) b) 2 2 1

2

8

x

xx  

≤  ÷  c) ( 4 + 15 )x + ( 4 − 15 )x > 62

Bài 26) Giải các phương trình sau:

a) 9x−3x+ 2− =10 0 b) log (23 x− +7) log (3 x− =2) 2

c) 6.91 13.61 6 6.41 0

= +

x

Bài 27) Giải các bất phương trình sau:

log (3x− >2) log (2x+3) b) 2 2 1

3

81

x

xx  

≤  ÷ 

1 1

1 5 2

x x

Bài 28) Giải pt và bất pt sau

9

1

3 2 4 1

=

+

x x

b log2 x+ log2(x− 1 ) = 1 d log2(x+ 3 ) + log2(x− 1 ) ≥ log25

e logx3−log3x3<0 e) 3x+ 1 + 18 3 −x = 29 f) x x x

1 1 1

25 35

Bài 29) Giải pt và bất pt sau

a log ( 2 ) log 3

2 1 2

2

e log4(log2 x) + log2(log4 x) = 2 f) 2x+2 − 2x+3 − 2x+4 > 5x+1 − 5x+2

g) log 2 log24 4 0

Bài 30) Giải pt và bất pt sau

a 5 4x + 2 25x − 7 10x ≤ 0 c 2 2 2 5 1 81

=

x x

b log5( 26 − 3x) > 2

d log ( 21) log 1

2

1 2

1 x+ + x=

4 log 3 ) (log

2 xx − = e) 2x+ 2 7 −x ≤ 9

f) 3x+1 + 3x-2 - 3x-3 + 3x-4 = 750

Bài 31) Giải pt và bất pt sau

a 3 2x+ 1 − 10 3x + 3 ≤ 0 c 2 2 +x− 2 2 −x = 15

b log 2 log2 0

e 3 lg 2 3 lg 2 5 2

x f)log ( 2 6 5) 2log3(2 ) 0

3

1 xx+ + −x ≥ g)

3 log log

log

2 1 4

Bài 32) Giải pt và bất pt sau

a 2x + 2 3 −x ≤ 9 c 4x − 2 2x+ 1 + 4 = 0

Trang 4

b

6

33 log

log

2

1 ( log

2

1 2

1 x− + x− ≤

e logx3−log3x3<0 f)log ( 2x+ 1 − 5 ) =x

2 g)log21(5x+1)> −5

Bài 33) Giải pt và bất pt sau

a log2(x− 3 ) + log2(x− 2 ) ≤ 1 c ) 2

2

1

=

+

x x

b 5 4x + 2 25x − 7 10x = 0 d log3( 13 − 4x) > 2

e log4(log2 x) + log2(log4x) > 2 e 3x+ 1 + 3x− 2 − 3x− 3 + 3x− 4 < 750

g 7 3x + 9 5 2x = 5 2x + 9 7 3x

Bài 34) Giải pt và bất pt sau

a log3(x− 3 ) + log3(x− 5 ) < 1 c 2 2 5 6 1

=

+

x x

b 3 2x+ 1 + 5 2x − 2x+ 2 = 21 d log5( 28 − 3x) > 2

4 log 3 ) (log

2 xx − = f  

2

g 3x− 3 −x+2+ 8 > 0

Bài 35) Giải pt và bất pt sau

2 1 2

2

b 3 log3x− log9x= 5 d 4x + 2x − 6 > 0

e 3 lg 2 3 lg 2 5 2

x f 5 2x+ 1 − 3 5 2x− 1 = 110

g. 6 + 35 x+  6 − 35 x > 12

Ngày đăng: 06/11/2013, 05:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w