Co dua
Doa nay
Bot net t
Ma ko thay gi
B i 1: Gi à ải pt
§
8x + 18x = 2.27x
8x − 7.4x + 7.2x + 1 − 8 = 0
49x+1 + 40.7x+2 - 2009 = 0
9 2x +4 - 4.3 2x + 5 + 27 = 0
5 2x + 1 - 7 x + 1 = 5 2x + 7 x
64 9x – 84 12x + 27 16x = 0
Bài 2: Giải BPT
2.16 − 15.4 − = 8 0
2x 8 x 5
3 + −4.3 + +27 0=
(3 + 5) + 16(3 − 5) = 2 +
3 x− =9 x−
3sin 1
x+
÷
cos 2 3cos
x− x
÷
3 +x +3 −x =30
1
2 x −2 − x =1
2 1 4 2
5x − −2.5 −x −123 0=
2x −x −2 + −x x =3
1
4x−6.2x+ +32 0=
27x−13.9x +39.3x −27 0=
cot cot
0 3 3
36
9 2 1 2 3
= +
x
(3 2 2+ )x − 2( 2 1+ )x − 2 1 0− =
2 2
x
x
x+ = −
2
3 x + x x = 162
2x+5x =7x
3x +4x =5x
2 10
4x − +x +4x + +x = +1 4 x + +x
(2+ 3) (x + 2− 3)x =4 6.9x−13.6x+6.4x=0 8.4x−70.10x+125.25x =0
2x +x+2 − −x x =5
0 6 2
4x + x− =
0 27 3
4
34x+ 8− 2x+ 5 + =
0 9 6 6 13 4
6 x− x + x =
0 4 6 6 13 9 6
1 6 1 1
= +
− x+ x x
x x
x 15 2.9
25 + =
(9 2 ) 3 log2 − =
x
5 3 3
4
2 x− = x+ x−
32x+ 1 − x+ =
0 7 3 5
9x+ x + =
(3+ 5) (x+163− 5)x =2x+3
x x
x 2.81 2.36 16
25x −2 5 x − =15 0
3 x-4.3 x+ + =27 0
3x+ −3 −x =24
1
− + =
÷ ÷
3 1
( 3 2) ( 3 2)
x
x
x−
3 + + 2.3 7 − =
2 1
3 x+ −9.3x+ =6 0
2 2
2 x+ −9.2x+ =2 0
4x+ −6.2x+ + =8 0
6.9 −13.6 +6.4 =0
(7 4 3) + − 3(2 − 3) + = 2 0
2.16 − 15.4 − = 8 0
3.16 + 2.8 = 5.36
6 2
9x <3x+
0 5 5 4
252 x −1 2 x 2− < 2 2
2
25+ x−x + + x−x ≥ x−x
(5− 21) (x+7.5+ 21)x ≥8.2x
Trang 22.14x + 3.49x – 4x ≥ 0
3.4x + 1 − 35.6x + 2.9x + 1 ≥ 0
Bài 3: Giải Pt
1
x
−
12 3
1 3 3
1 2 1 1
>
+
x x+
3x+9.3−x− <10 0
1
( ) 8 12.( )
( 7 4 3) ( 7 4 3) 14
9 x x− + −34.15 x x− +25 x x− + ≥0
27x+5.12x −6.8x ≥0
1
9x−4.3x+ +27 0≤
1
6x+ <4 2x+ +2.3x
9 2
2x + 7 −x ≤
3 + 2.6 - 7.4 0− >
3
log x+log 9 3x =
1 ) 1 ( log log2 x+ 2 x− =
( 3) log ( 1) 2 log 8
log4 x+ − 4 x− = − 4
3 3 log log
4 9 x+ x =
2
2
log (x −2x− = −8) 1 log (x+2)
log 2 log 4x 3
x
2
log x log 2 3+ =
(9 5.3 ) 4 log2 x+ x =
log 3 x − =
x
( 1) log 16 log2 x+ = x+1
log x+ +2 log x− =2 log 5
2
log x+3log x+log x=2
log x − + =4 x log 8 x+ 2
1 log+ x− =1 logx− 4
2 log x+log 16x− =7 0
2
log 2 log 0
6
3log 16 4logx − x = 2log x
log 16 log 64 3x + x =
2
2 2
log x−3.log x+ =2 0
log log 2
4 x+x =6
log x − − =x 5 log 2x+5
log x+ =4 log 2+ x−4
3.log x+ =2 2.log x+1
2
log 4x −log 2x =5
2
1 log
3 1 log 1 log 2 log4 3 + 2 + 3 x =
Trang 3log 4 (x +3) – log 4 (x 2 – 1) = 0
log 2 (9 x – 2 +7)–2 = log 2 ( 3 x – 2 + 1)
log 4 x + log 2 x + 2log 16 x = 5 log 2 x +
logx + logx = log 2x - log(5x + x - 2) = log
4x
Bài 4: Giải BPT
2 1 3
x
log log log
2
3 3
2
25
5
log + =
2
10log x+ =6 9
log
2
2
(2 ) log 2
log
2
x
x x
3 log 3 ) 12 7 ( log ) 2 3
(
2
2
2 x2(log+ x+)2 +log3 x.log+3(x+2 1= 1+)
log x + log x = log 3
log x + log x = log 3
1
.log(5 4) log 1 2 log 0,18
log x − + =4 x log 8 x+ 2
log 2 log 0
6
1 log+ x− =1 logx− 4
3log 16 4logx − x = 2log x
log 16 log 64 3x + x =
( ) 5 log 5 1
log x x-1 + log x − x -2 0 =
2
log x + log x + = 1 1
log x − + = 4 x log 8 x 2 +
2
1+log (x− =1) logx− 4
2 log x +log 16x− =7 0
2
2
2
log x+3log x+log x=2
2423
2 log 2 ) 2 ( log log4 x+ 4 x− = − 4
2
2 log x 2 log+ + x + 4 5=
1 ) 5 ( log ) 3 ( log3 x− + 3 x− <
log x+ ≥ +3 1 log x−1
6 log log
log
3 1 3
3x(+ 1) xlog+ (2 x<)
2
log x + −3 x − +1 2log x≤0
log
x x
−
<
log x+ ≥ +3 1 log x−1
2
2 log 64 log 16 3x + x ≥
log x+log 8 4x ≤
( 16 ) log ( 4 11 )
log2 x2 − ≥ 2 x −
( 6 8 ) 2 log ( 4 ) 0
5
Trang 4log2( x2 – 4x – 5) < 4
Bài 5: Giải hpt
a)
b)
c)
d)
e)
g)
2x x − x + <
log
log 2
(x+1)≤log (2−x)
2
1
(5 8 3) 2
logx x2 − x+ >
1 1
1 2 log >
−
−
x
x x
2
1
x
+ − ≤
2
≥
( 2 )
3
log log x −5 >0
1
4
( 2 )
log 5x x −8x+ >3 2
log x+log 8 4x ≤
2
log log x +log log x ≥2
log x+ ≥3 log x+1
log x − + ≥3x 2 log x+14
( )
2
log 2x −log x ≤1
( )
log 4x −2x + ≤x
1 log ( 3) log (4 ) log
6
x+ + − >x
( 15) lg(2 5) 2
lg x+ + x− <
1 2
2 3 log
+
+
x x
1 1
3 2 log
−
−
x x
5 log 4 1 log 3
2
x
x
+
= +
=
−
− 25
1
1 log ) ( log
2 2
4 4
1
y x
y x
y
x 1 2 y 1 3log (9x ) log y 3
− + − =
= +
= +
4 log log
2
5 ) (
log
2 4
2 2 2
y x
y x
lg x lg y 1
x y 29
log x log y 0
x 5y 4 0
1
4 6.3 2 0
+
− =
− + =