1. Trang chủ
  2. » Giáo án - Bài giảng

PT,BPT MŨ,LOGARIT ÔN TUYỆT VỜI

4 290 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 457,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Co dua

Doa nay

Bot net t

Ma ko thay gi

B i 1: Gi à ải pt

§

8x + 18x = 2.27x

8x − 7.4x + 7.2x + 1 − 8 = 0

49x+1 + 40.7x+2 - 2009 = 0

9 2x +4 - 4.3 2x + 5 + 27 = 0

5 2x + 1 - 7 x + 1 = 5 2x + 7 x

64 9x – 84 12x + 27 16x = 0

Bài 2: Giải BPT

2.16 − 15.4 − = 8 0

2x 8 x 5

3 + −4.3 + +27 0=

(3 + 5) + 16(3 − 5) = 2 +

3 x− =9 x

3sin 1

x+

 ÷

 

cos 2 3cos

xx

 ÷

 

3 +x +3 −x =30

1

2 x −2 − x =1

2 1 4 2

5x − −2.5 −x −123 0=

2xx −2 + −x x =3

1

4x−6.2x+ +32 0=

27x−13.9x +39.3x −27 0=

cot cot

0 3 3

36

9 2 1 2 3

= +

x

(3 2 2+ )x − 2( 2 1+ )x − 2 1 0− =

2 2

x

x

x+ = −

2

3 x + x x = 162

2x+5x =7x

3x +4x =5x

2 10

4x − +x +4x + +x = +1 4 x + +x

(2+ 3) (x + 2− 3)x =4 6.9x−13.6x+6.4x=0 8.4x−70.10x+125.25x =0

2x +x+2 − −x x =5

0 6 2

4x + x− =

0 27 3

4

34x+ 8− 2x+ 5 + =

0 9 6 6 13 4

6 xx + x =

0 4 6 6 13 9 6

1 6 1 1

= +

x+ x x

x x

x 15 2.9

25 + =

(9 2 ) 3 log2 − =

x

5 3 3

4

2 x− = x+ x

32x+ 1 − x+ =

0 7 3 5

9x+ x + =

(3+ 5) (x+163− 5)x =2x+3

x x

x 2.81 2.36 16

25x −2 5 x − =15 0

3 x-4.3 x+ + =27 0

3x+ −3 −x =24

1

  −   + =

 ÷  ÷

   

3 1

( 3 2) ( 3 2)

x

x

x

3 + + 2.3 7 − =

2 1

3 x+ −9.3x+ =6 0

2 2

2 x+ −9.2x+ =2 0

4x+ −6.2x+ + =8 0

6.913.6 +6.4 =0

(7 4 3) + − 3(2 − 3) + = 2 0

2.16 − 15.4 − = 8 0

3.16 + 2.8 = 5.36

6 2

9x <3x+

0 5 5 4

252 x −1 2 x 2− < 2 2

2

25+ xx + + xxxx

(5− 21) (x+7.5+ 21)x ≥8.2x

Trang 2

2.14x + 3.49x – 4x ≥ 0

3.4x + 1 − 35.6x + 2.9x + 1 ≥ 0

Bài 3: Giải Pt

1

x

12 3

1 3 3

1 2 1 1

>

 +

x x+

3x+9.3−x− <10 0

1

( ) 8 12.( )

( 7 4 3) ( 7 4 3) 14

9 x x− + −34.15 x x− +25 x x− + ≥0

27x+5.12x −6.8x ≥0

1

9x−4.3x+ +27 0≤

1

6x+ <4 2x+ +2.3x

9 2

2x + 7 −x

3 + 2.6 - 7.4 0− >

3

log x+log 9 3x =

1 ) 1 ( log log2 x+ 2 x− =

( 3) log ( 1) 2 log 8

log4 x+ − 4 x− = − 4

3 3 log log

4 9 x+ x =

2

2

log (x −2x− = −8) 1 log (x+2)

log 2 log 4x 3

x

2

log x log 2 3+ =

(9 5.3 ) 4 log2 x+ x =

log 3 x − =

x

( 1) log 16 log2 x+ = x+1

log x+ +2 log x− =2 log 5

2

log x+3log x+log x=2

log x − + =4 x log 8 x+ 2 

1 log+ x− =1 logx− 4

2 log x+log 16x− =7 0

2

log 2 log 0

6

3log 16 4logxx = 2log x

log 16 log 64 3x + x =

2

2 2

log x−3.log x+ =2 0

log log 2

4 x+x =6

log x − − =x 5 log 2x+5

log x+ =4 log 2+ x−4

3.log x+ =2 2.log x+1

2

log 4x −log 2x =5

2

1 log

3 1 log 1 log 2 log4 3 + 2 + 3 x =

Trang 3

log 4 (x +3) – log 4 (x 2 – 1) = 0

log 2 (9 x – 2 +7)–2 = log 2 ( 3 x – 2 + 1)

log 4 x + log 2 x + 2log 16 x = 5 log 2 x +

logx + logx = log 2x - log(5x + x - 2) = log

4x

Bài 4: Giải BPT

2 1 3

x

log log log

2

3 3

2

25

5

log + =

2

10log x+ =6 9

log

2

2

(2 ) log 2

log

2

x

x x

3 log 3 ) 12 7 ( log ) 2 3

(

2

2

2 x2(log+ x+)2 +log3 x.log+3(x+2 1= 1+)

log x + log x = log 3

log x + log x = log 3

1

.log(5 4) log 1 2 log 0,18

log x − + =4 x log 8 x+ 2 

log 2 log 0

6

1 log+ x− =1 logx− 4

3log 16 4logxx = 2log x

log 16 log 64 3x + x =

( ) 5 log 5 1

log x x-1    +  log x − x -2 0 =

2

log x + log x + = 1 1

log x − + = 4 x log 8 x 2   +  

2

1+log (x− =1) logx− 4

2 log x +log 16x− =7 0

2

2

2

log x+3log x+log x=2

2423

2 log 2 ) 2 ( log log4 x+ 4 x− = − 4

2

2 log x 2 log+ + x + 4 5=

1 ) 5 ( log ) 3 ( log3 x− + 3 x− <

log x+ ≥ +3 1 log x−1

6 log log

log

3 1 3

3x(+ 1) xlog+ (2 x<)

2

log x + −3 x − +1 2log x≤0

log

x x

  <

log x+ ≥ +3 1 log x−1

2

2 log 64 log 16 3x + x

log x+log 8 4x

( 16 ) log ( 4 11 )

log2 x2 − ≥ 2 x

( 6 8 ) 2 log ( 4 ) 0

5

Trang 4

log2( x2 – 4x – 5) < 4

Bài 5: Giải hpt

a)

b)

c)

d)

e)

g)

2x xx + <

log

log 2

(x+1)≤log (2−x)

2

1

(5 8 3) 2

logx x2 − x+ >

1 1

1 2 log >

x

x x

2

1

x

 + − ≤

2

( 2 )

3

log log x −5  >0

1

4

( 2 )

log 5x x −8x+ >3 2

log x+log 8 4x

2

log log x +log log x ≥2

log x+ ≥3 log x+1

log x − + ≥3x 2 log x+14

( )

2

log 2x −log x ≤1

( )

log 4x −2x + ≤x

1 log ( 3) log (4 ) log

6

x+ + − >x

( 15) lg(2 5) 2

lg x+ + x− <

1 2

2 3 log

 +

+

x x

1 1

3 2 log

x x

5 log 4 1 log 3

2

x

x

+

= +

=

− 25

1

1 log ) ( log

2 2

4 4

1

y x

y x

y

x 1 2 y 1 3log (9x ) log y 3

 − + − =



= +

= +

4 log log

2

5 ) (

log

2 4

2 2 2

y x

y x

lg x lg y 1

x y 29

log x log y 0

x 5y 4 0





1

4 6.3 2 0

+

 − =

 − + =



Ngày đăng: 25/10/2014, 03:00

TỪ KHÓA LIÊN QUAN

w