Định hướng phát triển năng lực: Năng lực tự học; năng lực giải quyết vấn đề và sáng tạo; năng lực hợp tác; năng lực tính toán.. II.[r]
Trang 1Ngày soạn: 13 /1/2018
LUYỆN TẬP
I Mục tiêu.
1 Kiến thức: Củng cố các bước giải phương trình đưa được về dạng ax + b = 0.
2 Kĩ năng:
- Rèn kĩ năng giải phương trình đưa được về dạng ax + b = 0
- Viết được phương trình từ một bài toán có nội dung thực tế
3 Tư duy:
- Rèn luyện khả năng quan sát, dự đoán, suy luận hợp lý và suy luận lôgic
- Khả năng diễn đạt chính xác, rõ ràng ý tưởng của mình và hiểu được ý tưởng của người khác
4 Thái độ:
- Rèn luyện tính chính xác, cẩn thận
- Có ý thức tự học, hứng thú và tự tin trong học tập
* Tích hợp giáo dục đạo đức: giáo dục tính trách nhiệm, khoan dung, hợp tác, đoàn kết
5 Định hướng phát triển năng lực: Năng lực tự học; năng lực giải quyết vấn đề và sáng
tạo; năng lực hợp tác; năng lực tính toán
II Chuẩn bị của giáo viên và học sinh.
- Giáo viên: Giáo án, SGK, bảng phụ
- Học sinh: SGK, dụng cụ học tập Đọc trước bài mới
III Phương pháp.
- Vấn đáp, gợi mở Luyện tập
- Hoạt động cá nhân, hoạt động nhóm
IV Tiến trình giờ dạy.
1 Ổn định lớp 1 ph
2 Kiểm tra bài cũ 6 ph
Câu hỏi: Nêu các bước giải phương trình đưa được về dạng ax + b = 0
Áp dụng: Giải phương trình 5(7x – 1) + 60x = 6(16 – x)
Đápán: Giải phương trình:
5(7x 1) 60x 6(16 x) 35x 5 60x 96 6x
35x 60x 6x 96 5 101x 101
x 1
Vậy phương trình có tập nghiệm S = {1}
3 Bài mới.
Hoạt động 1: Luyện tập
Mục tiêu:- Rèn kĩ năng giải phương trình đưa được về dạng ax + b = 0
- Viết được phương trình từ một bài toán có nội dung thực tế
Hình thức tổ chức: Dạy học phân hóa
Thời gian: 20 ph
Phương pháp: Vấn đáp, gợi mở Luyện tập Hoạt động nhóm
Cách thức thực hiện:
Trang 2GV: Yêu cầu HS làm BT14 sgk/13.
? Để kiểm tra giá trị của ẩn có là nghiệm của
pt hay không, ta làm như thế nào?
HS: Thay giá trị của ẩn vào hai vế, khi đó nếu
hai vế cùng nhận một giá trị thì giá trị của ẩn
là nghiệm của pt
Gọi HS lên bảng làm bài
3HS lên bảng làm bài HS khác nhận xét và
bổ sung (nếu có)
GV: Kiểm tra đánh giá
Giải phương trình
GV: Yêu cầu HS làm BT17a), f) skg/14
? Nêu cách làm câu a) và câu f)?
HS: Đứng tại chỗ trả lời
Gọi 2HS lên bảng thực hiện
HS: Lên bảng trình bày bài làm
GV: Nhận xét bài làm của HS.
Đưa BT18b) sgk/14 lên bảng phụ
Yêu cầu HS hoạt động theo nhóm bàn tìm lời
giải
HS: Hoạt động theo nhóm bàn
Gọi một số nhóm kiểm tra cách làm Nếu các
nhóm chỉ làm theo cùng một cách thì GV
hướng dẫn theo cách khác Nếu các nhóm
làm theo các cách khác nhau thì gọi một
nhóm đại diện cho mỗi cách làm đó
GV: Nhận xét, đánh giá và chốt lại kiến thức
BT14 (sgk/13)
–1 là nghiệm của pt (3)
2 là nghiệm của pt (1) –3 là nghiệm của pt (2)
BT17 (sgk/14)
a) 7 + 2x = 22 – 3x 2x 3x 22 7
5x 15
x 3
Vậy pt có tập nghiệm S = {3}
f) (x – 1) – (2x – 1) = 9 – x
x 1 2x 1 9 x
x 2x x 9 1 0x 10 (voâ nghieäm)
Vậy pt có tập nghiệm S
BT18 (sgk/14)
b)
Cách 1:
0,2(2 x) 0,5x 0,25(1 2x) 0,25 0,4 0,2x 0,5x 0,25 0,5x 0,25 0,2x 0,1
x 0,1: 0,2
x 0,5
Vậy pt có tập nghiệm S = {0,5}
Cách 2:
4(2 x) 10x 5(1 2x) 5
8 4x 10x 5 10x 5 4x 2
1 x 2
Vậy pt có tập nghiệm
1 S 2
Trang 3Hoạt động 2: Bài toán có nội dung thực tế.
Mục tiêu:- Rèn kĩ năng giải phương trình đưa được về dạng ax + b = 0
- Viết được phương trình từ một bài toán có nội dung thực tế
Hình thức tổ chức: Dạy học phân hóa
Thời gian: 12 ph
Phương pháp: Vấn đáp, gợi mở Luyện tập
Cách thức thực hiện:
GV: Đưa BT15 skg/13 lên bảng phụ
? Bài toán cho biết gì? Yêu cầu gì?
HS: Xác định yêu cầu bài toán
GV: ? Bài toán có những đại lượng nào?
HS: Bài toán có ba đại lượng: vận tốc,
quãng đường, thời gian
GV: ? Nêu công thức tính quãng đường khi
biết vận tốc và thời gian?
HS: s = v.t
GV: Kẻ bảng phân tích ba đại lượng rồi yêu
cầu HS điền vào bảng bằng cách trả lời các
câu hỏi
v(km/h) t(h) s(km)
Xe máy 32
? Quãng đường ôtô đi được sau x(h)?
? Thời gian xe máy đi được?
? Quãng đường xe máy đã đi?
? Quãng đường ôtô gặp xe máy biểu thị
như thế nào?
Gọi 1HS lên bảng trình bày
1HS lên bảng thực hiện, HS dưới lớp làm
vào vở
GV: Yêu cầu HS nhận xét bài làm của bạn
HS: Đứng tại chỗ nhận xét
GV: Nhận xét và đánh giá về kết quả và ý
thức tham gia hoạt động, năng lực đạt
được thông qua hoạt động
BT15 (sgk/13)
Trong x giờ, ôtô đi được quãng đường 48x (km)
Xe máy đi trước ôtô 1 giờ nên thời gian xe máy đi là x + 1 (giờ) Trong thời gian đó quãng đường xe máy đi được là 32(x+1) (km)
Ôtô gặp xe máy sau x giờ (kể từ khi ôtô khở hành), có nghĩa là đến thời điểm đó quãng đường hai xe đi được là bằng nhau Vậy phương trình cần tìm là:
48x = 32(x + 1)
4 Củng cố.3 ph
Phát biểu các quy tắc để giải phương trình? Khi đưa phương trình về dạng ax + b = 0 cần lưu ý đến những trường hợp nào?
5 Hướng dẫn học sinh tự học ở nhà 3 ph
- Nắm vững phương pháp giải phương trình bậc nhất một ẩn, các trường hợp nghiệm khi giải phương trình đưa được về dạng ax + b = 0
- BTVN: 19, 20 sgk/14 ; 22, 23 sbt/8
Trang 4- Ôn tập các phương pháp phân tích đa thức thành nhân tử.
- Xem trước bài: Phương trình tích
V Rút kinh nghiệm.
Ngày soạn:13/ 1/ 2018
§4 PHƯƠNG TRÌNH TÍCH
I Mục tiêu.
1 Kiến thức:Hiểu các khái niệm phương trình tích, biết cách giải phương trình tích dạng
có hai hay ba nhân tử bậc nhất
2 Kĩ năng:
- Giải được PT tích dạng đơn giản
- Về PT tích A(x).B(x).C(x) = 0 (A,B,C là các đa thức chứa ẩn), HS nắm vững cách tìm nghiệm của phương trình này bằng cách tìm nghiệm của các phương trình
A(x)=0,B(x)=0, C(x) =0
3 Tư duy:
- Khả năng diễn đạt chính xác, rõ ràng ý tưởng của mình và hiểu được ý tưởng của người khác
- Các phẩm chất tư duy, đặc biệt là tư duy linh hoạt, độc lập và sáng tạo
4 Thái độ:
- Có ý thức tự học, hứng thú và tự tin trong học tập
- Có đức tính trung thực, cần cù, vượt khó, cẩn thận, chính xác, kỉ luật,sáng tạo
* Giáo dục tính Hợp tác, trách nhiệm, đoàn kết, tôn trọng, trung thực.
5 Định hướng phát triển năng lực: Năng lực tự học; năng lực giải quyết vấn đề và sáng
tạo; năng lực hợp tác; năng lực tính toán
II Chuẩn bị của giáo viên và học sinh.
- Giáo viên: Giáo án, MT, MC
- Học sinh: Dụng cụ học tập Ôn tập các kiến thức liên quan, đọc trước bài mới
III Phương pháp.
- Phát hiện và giải quyết vấn đề
- Hoạt động cá nhân
IV Tiến trình giờ dạy.
1 Ổn định lớp 1 ph
2 Kiểm tra bài cũ 6 ph
Câu hỏi: 1 Phân tích đa thức sau thành nhân tử: (x2 – 1) + (x + 1)(x – 2)
2 Giải phương trình:
x
Đáp án: 1 (x2 – 1) + (x + 1)(x – 2) = (x + 1)(x – 1) + (x + 1)(x – 2)
= (x + 1)(x – 1 + x – 2)
= (x + 1)(2x – 3)
2
x 2x 3(2x 1) x 6x
2x 6x 3 x 6x
x 3
Trang 5Vậy phương trình có tập nghiệm S 3
3 Bài mới
Hoạt động 1: Tìm hiểu cách giải phương trình tích.
Mục tiêu:Hiểu các khái niệm phương trình tích, biết cách giải phương trình
Hình thức tổ chức: Dạy học theo tình huống
Thời gian: 13 ph
Phương pháp:Phát hiện và giải quyết vấn đề Hoạt động cá nhân
Cách thức thực hiện:
Đặt vấn đề
Đưa ?2 lên bảng phụ Yêu cầu HS trả
HS: Trong một tích, nếu có một thừ số
bằng 0 thì tích đó bằng 0; ngược lại, nếu
tích bằng 0 thì ít nhất một trong các thừa
số của tích bằng 0
? Viết tính chất này dưới dạng tổng quát?
HS:a.b 0 a 0 hoặc b = 0
Tính chất này vẫn đúng trong trường hợp
a, b là các đa thức
GV: Hướng dẫn HS làm ví dụ 1
? Nhận xét hai vế của pt trong ví dụ 1 có
đặc điểm gì?
HS: Trả lời câu hỏi
Giới thiệu: Pt trong ví dụ 1 gọi là pt tích
? Em hiểu thế nào là pt tích?
HS: Là pt có VP = 0, VT là tích của các
đa thức
GV: Giới thiệu dạng tổng quát
? Từ ví dụ 1, hãy nêu cách giải pt tổng
quát?
HS: Quan sát và nêu cách giải
1 Phương trình tích và cách giải.
Ví dụ 1 Giải phương trình:
(x + 1)(2x – 3) = 0
Giải
(x + 1)(2x – 3) = 0
x 1 0
hoặc 2x – 3 = 0 1) x + 1 = 0 x1 2) 2x – 3 = 0 2x 3 x 1,5 Vậy pt đã cho có tập nghiệm S 1;1,5
Tổng quát:
A(x).B(x) = 0
Cách giải:
Bước 1:
A(x).B(x) = 0 A(x) 0 hoặc B(x) = 0 Bước 2: Giải pt A(x) = 0 (1)
Giải pt B(x) = 0 (2) Bước 3: Kết luận
(Nghiệm của pt ban đầu là tất cả các nghiệm của pt (1) và (2))
Hoạt động 2: Áp dụng
Mục tiêu:
- Giải được PT tích dạng đơn giản
- Về PT tích A(x).B(x).C(x) = 0 (A,B,C là các đa thức chứa ẩn), HS nắm vững cách tìm nghiệm của phương trình này bằng cách tìm nghiệm của các phương trình
A(x)=0,B(x)=0, C(x) =0
Hình thức tổ chức: Dạy học theo tình huống, dạy học phân hóa
Thời gian: 20 ph
Phương pháp:Phát hiện và giải quyết vấn đề Hoạt động cá nhân
Cách thức thực hiện:
Đưa ví dụ 2 lên bảng phụ
? Pt này đã ở dạng pt tích chưa? Vì sao?
? Để đưa về dạng pt tích ta cần biến đổi theo
2 Áp dụng.
Ví dụ 2 (sgk/16)
Trang 6hướng nào?
HS: Biến đổi cho VP = 0, VT thành tích của
các đa thức
? Để VP = 0 ta phải làm gì?
? Tiếp theo ta phải làm gì để được phương
trình tích?
HS: Trả lời câu hỏi
Yêu cầu HS nghiên cứu đáp án ví dụ 2 trong
sgk
? Từ ví dụ 2, để giải pt đưa được về dạng pt
tích, ta tiến hành qua mấy bước? Là những
bước nào?
Nghiên cứu ví dụ 2 và trả lời câu hỏi
GV: Yêu cầu HS làm ?3
HS: Áp dụng làm ?3
GV: ? Nếu sau khi biến đổi pt, VT có nhiều
hơn hai nhân tử ta làm như thế nào?
GV: Gọi 1HS lên bảng trình bày
HS: 1HS lên bảng trình bày, HS dưới lớp
làm vào vở
GV: Chốt lại cách giải
Yêu cầu HS làm ?4
HS: Áp dụng làm ?4
Nhận xét và đánh giá về kết quả và ý thức
tham gia hoạt động, năng lực đạt được thông
qua hoạt động
Cách giải pt đưa được về dạng pt tích:
Bước 1: Đưa pt đã cho về dạng pt tích:
Chuyển tất cả các hạng tử sang VT, VP
= 0 Rút gọn rồi phân tích VT thành nhân tử
Bước 2: Giải pt tích nhận được rồi kết luận nghiệm
?3 (x – 1)(x2 + 3x – 2) – (x3 – 1) = 0
(x 1)(x 3x 2) (x 1)(x x 1) 0 (x 1)(x 3x 2 x x 1) 0
(x 1)(2x 3) 0
x 1 0
hoặc 2x – 3 = 0 1) x – 1 = 0 x 1 2) 2x – 3 = 0 2x 3 x 1,5 Vậy pt đã cho có tập nghiệm S =
1;1,5
Chú ý: Nếu sau khi phân tích, VT có
nhiều hơn hai nhân tử, ta giải tương tự trường hợp hai nhân tử
?4 (x3 + x2) + (x2 + x) = 0
x ( x2 + x) + (x2 + x) = 0
(x2 + x)(x + 1) = 0
x(x+1)(x + 1) = 0
x = 0 hoặc x + 1 = 0 1) x = 0
2) x + 1 = 0 x1 Vậy pt đã cho có tập nghiệm S =
0; 1
4 Củng cố 3 ph
? Thế nào là phương trình tích? Giải phương trình tích ta làm như thế nào?
? Khi giải những pt từ bậc 2 trở lên ta thường làm như thế nào? (Biến đổi về dạng pt tích rồi giải)
? Để biến đổi pt về dạng pt tích ta làm như thế nào?
5 Hướng dẫn học sinh tự học ở nhà 2 ph
- Xem lại các ví dụ và bài tập áp dụng
- Làm các bài tập: 21, 22, 23, 24, 25 sgk/17
- Chuẩn bị cho tiết sau “Luyện tập”
V Rút kinh nghiệm.
Trang 7