1. Trang chủ
  2. » Giáo án - Bài giảng

HINH HOC 9 (ca nam)

178 309 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hệ thức lượng trong tam giác vuông
Tác giả Nguyễn Viết Công
Trường học Trường THCS Phúc Đồng
Chuyên ngành Hình học
Thể loại Bài giảng
Năm xuất bản 2005
Thành phố Hà Nội
Định dạng
Số trang 178
Dung lượng 4,15 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chương I : “Hệ thức lượng trong tam giác vuông” bao gồm các hệ thức trong tam giác vuông, sử dụng các hệ thức này để tính các góc, các cạnh trong một tam giác vuông nếu biết được hai cạn

Trang 1

Ngµy so¹n: 3 / 9 /2005 Chương I: Hệ thức lượng trong tam giác vuông.

TiÕt 1 :MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO

A MỤC TIÊU

 HS cần nhận biết được các cặp tam giác vuông đồng dạng trong hình 1/tr64.

 Biết thiết lập các hệ thức : b 2 = a.b / , c 2 = a.c / , h 2 = b / c /

 Biết vận dụng các hệ thức trên để giải bài tập

B CHUẨN BỊ

 GV : - Tranh vẽ hình 2/tr66 Bảng phụ ghi định lí 1; định lí 2 ; và các câu hỏi, bài tập.

- Thước thẳng, phấn màu

- Thước thẳng, êke.

C TIẾN TRÌNH DẠY – HỌC

3 Các hình không gian : hình trụ, hình nón, hình cầu.

Chương I : “Hệ thức lượng trong tam giác vuông” bao gồm các hệ thức trong tam giác vuông, sử dụng các hệ thức này để tính các góc, các cạnh trong một tam giác vuông nếu biết được hai cạnh hoặc biết được một cạnh và một góc trong tam giác vuuong đó Hôm nay các em học bài đầu tiên của chương I “Một số hệ thức về cạnh và đường cao trong tam giác vuông”

Hoạt động 2 :

1 HỆ THỨC GIỮA CẠNH GÓC VUÔNG VÀ HÌNH CHIẾU CỦA NÓ TRÊN CẠNH

HUYỀN

GV vẽ hình 1 tr64 lên bảng phụ và giới

thiệu các kí hiệu qui ước trên hình : HS quan sát hình vẽ, và nghe GV trình bàycác qui ước về độ dài của các đoạn thẳng

trên hình.

c h

/ b /

Trang 2

GV lưu ý HS : Trong  ABC người ta luôn

qui ước : AB = c; AC = b ; BC = a.

Yêu cầu HS đọc định lí 1 sgk.

Theo định lí này, ta viết được hệ thức gì

GV nhận xét bài làm của HS

Hỏi : Mấu chốt của việc chứng minh hai

hệ thức trên là gì?

Bài 2/tr68 (Đưa đề bài và hình vẽ lên

bảng phụ).

GV : Ở lớp 7 các em đã biết nội dung của

định lí Pytago, hãy phát biểu nội dung của

định lí này.

Hệ thức : a 2 = b 2 + c 2 Em nào chứng minh?

Gợi ý : Dựa vào kết quả của định lí 1 vừa

học để chứng minh.

Vậy từ định lí 1 ta cũng suy ra được định lí

Hỏi : Theo các qui ước thì ta cần chứng

minh hệ thức nào?

Để chứng minh hệ thức này ta phải chứng

minh điều gì? Em nào chứng minh được

y x

Trang 3

Yêu cầu HS áp dụng định lí 2 vào việc

giải ví dụ 2 tr66,sgk.

(Đưa đề bài và lên bảng phụ).

Hỏi : Đề bài yêu cầu ta tính gì?

- Trong tam giác vuông ADC ta đã biết

những gì?

- Cần tính đoạn nào?

- Cách tính?

HS lên bảng trình bày.

GV nhận xét bài làm của HS.

HS quan sát bảng phụ.

Đề bài yêu cầu tính đoạn AC.

Trong tam giác vuông ADC ta đã biết

Tính đoạn BC.

ÁP dụng định lí 2, ta có : BD 2 = AB.BC

  BC = 3,375 (m) Vậy chiều cao của cây là :

AC = AB + BC = = 4,875 (m)

HS nhận xét bài làm trên bảng, nghe GV nhận xét chung sau đó ghi bài giải vào vở Hoạt động 4 : CỦNG CỐ – LUYỆN TẬP

Hãy phát biểu định lí 1 và định lí 2?

(I  EF) Hãy viết hệ thức các định lí 1 và

2 ứng với hình trên.

Bài 1/tr68 (Đưa đề bài lên bảng phụ).

Yêu cầu hai HS lên bảng làm bài (cả hai

em cùng làm bài 1a,b.

HS phát biểu định lí 1 và định lí 2.

HS nghe GV đọc đề và vẽ hình.

Ghi hệ thức

Bài 1/tr68

Hai HS lên bảng làm bài.

Các HS còn lại làm bài trên giấy (Hình vẽ có sẵn trong sgk)

a) x = 3,6 ; y = 6,4 b) x = 7,2 ; y = 12,8

Hoạt động 5 :

HƯỠNG DẪN VỀ NHÀ

- Yêu cầu HS học thuộc định lí 1, định lí 2, định lí Pytago.

- Đọc “có thể em chưa biết” tr68 sgk là các cách phát biểu khác của hệ thức1, hệ thức2.

- Bài tập về nhà số 4,6 tr69 sgk và bài số 1,2 tr89 SBT.

- Ôn lại cách tính diện tích tam giác vuông.

- Đọc trước định lí 3 và 4.

1,5 m

1,5 m 2,25 m

8 6

y x

12

20

Trang 4

TiÕt 2 : MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG

A MỤC TIÊU

 Củng cố định lí 1 và 2 về cạnh và đường cao trong tam giác vuông.

1 b

1 h

1

 Biết vận dụng các kiến thức trên để giải bài tập.

B CHUẨN BỊ

- Bảng phụ ghi sẵn một số bài tập, định lí3, định lí4.

- Thước thẳng, compa, êke.

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA

GV nêu yêu cầu kiểm tra :

Phát biểu định lí1 và 2 hệ thức về cạnh và

đường cao trong tam giác vuông.

- Vẽ tam giác vuông, điền kí hiệu và hệ

thức 1 và 2 (dưới dạng chữ nhỏ a,b,c .)

- Chữa bài tập 4 tr69 sgk (Đưa đề bài lên

bảng phụ).

GV nhận xét bài làm của HS.

HS : Phát biểu định lí1 và 2 hệ thức về cạnh và đường cao trong tam giác vuông -Vẽ tam giác vuông, điền kí hiệu và hệ thức 1 và 2 (dưới dạng chữ nhỏ a,b,c .).

GV đưa nội dung của định lí 3 và hình vẽ

lên bảng phụ.

- Nêu hệ thức của định lí 3

Trang 5

Yêu cầu HS phát hiện thêm cách chứng

minh khác.

Yêu cầu HS trình bày miệng chứng minh,

GV ghi vài ý chính trong chứng minh này :

có góc nhọn B chung)  AH ACBC BA

 AC.AB = BC.AH hay b.c = a.h

HS : Có thể chứng minh dựa vào tam giác

HS trình bày miệng chứng minh

HS làm bài 3 tr69 sgk Tính x và y.

lí Pytago, ta có thể chứng minh được hệ

1 b

1 h

1

phát biểu thành lời như sau :

GV phát biểu định lí 4 đồng thời có

giải thích từ gọi nghịch đảo của h 2

1

Hướng dẫn chứng minh :

1 b  2 c 2

HS nghe GV đặt vấn đề.

HS nghe GV giải thích từ gọi của h 2

1

HS nghe GV hướng dẫn tìm tòi cách chứng

1 1 1

a

5

y

Trang 6

b 2 c 2h 2 a 2 Vậy để chứng minh hệ thức

Hệ thức b 2 c 2h 2 a 2 có thể chứng minh

được từ đâu? Bằng cách nào?

Yêu cầu các em về nhà tự trình bày chứng

minh này.

Ví dụ 3/tr67 (Đưa đề bài và hình vẽ lên

bảng phụ).

Căn cứ vào giả thiết, ta tính độ dài đường

cao h như thế nào?

1 b

1 h

được các hệ thức cạnh và đường cao trong

tam giác vuông.

1

HS điền vào chỗ trống ( )

Hoạt động 5 :

HƯỚNG DẪN VỀ NHÀ

- Nắm vững các hệ thức về cạnh và đường cao trong tam giác vuông.

- Bài tập về hnà số 7, 9 tr 69,70 sgk, bài số 3, 4, 5, 6, 7 tr 90 sbt.

- Tiết sau luyện tập.

Trang 7

Ngµy so¹n :

TiÕt 3 : LuyƯn tËp

A MỤC TIÊU

 Củng cố các hệ thức về cạnh và đường cao trong tam giác vuông.

 Biết vận dụng các hệ thức trên để giải bài tập.

B CHUẨN BỊ

- Thước thẳng, êke, compa, phấn màu.

- Thước kẻ, compa, êke.

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA HS1: Chữa bài tập 3(a) tr90,sgk.

(Đưa đề bài và hình vẽ lên bảng phu).

Phát biểu các định lí vận dụng chứng minh

trong bài toán.

HS2: Chữa bài tập số 4(a) tr 90 SBT.

Phát biểu các định lí vận dụng trong chứng

HS2: Chữa bài tập số 4(a).

Trang 8

Bài 1 (trắc nghiệm)

Hãy chọn kết quả đúng (giả thiết đã ghi

GV vẽ hình hướng dẫn.

Hỏi : Chứng minh cách vẽ này đúng, nghĩa

là chứng minh điều gì?

minh điều gì?

- Em nào chứng minh ?

Cách 2 : Yêu cầu HS về nhà tự vẽ lại hình

và tự tìm tòi chứng minh.

Bài 8b,c : (Đưa đề bài và hình vẽ lên bảng

phụ).

Câub)

HS đọc đề trắc nghiệm.

HS chọn : a) C 12 b) B 15

HS vẽ theo để nắm được cách vẽ của bài toán.

Nghĩa là chứng minh : x 2 = a.b.

Ta cần chứng minh tam giác ABC vuông tại A

Một HS trình bày miệng chứng minh .

- HS hoạt động nhóm để giải câu b:

Tam giác vuông ABC có AH là trung tuyến thuộc cạnh huyền (vì HB = HC = x)

Tam giác vuông HAB có :

 y = = 2 2

- HS hoạt động nhóm để giải câu b:

C

·O b H

a B

H 2

Trang 9

Câu c)

Yêu cầu HS hoạt động nhóm để giải câu

b, c.

Sau thời gian giải, GV yêu cầu hai nhóm

cử đại diện lên giải.

GV nhận xét bài làm của HS.

Bài 9/tr70 (Đưa đề bài lên bảng phụ).

GV hướng dẫn HS vẽ hình.

Hỏi : Để chứng minh tam giác DIL là tam

giác cân ta cần chứng minh điều gì?

1 DI

1

khi I thay đổi trên AB.

GV nhận xét bài làm của HS.

HS nhận xét bài làm trên bảng, nghe GV nhận xét chung sau đó ghi bài giải vào vở.

1

1 DL

1

Trong tam giác vuông DKL có DC là đường cao tương ứng với cạnh huyền KL, vậy :

2

1 DL

HƯỚNG DẪN VỀ NHÀ

- Thường xuyên ôn lại các hệ thức lượng trong tam giác vuông.

1

3

D A

I

2

Trang 10

- - -  - - - - - -

Ngµy so¹n :

TiÕt 4: LuyƯn tËp

A MỤC TIÊU

 Củng cố các hệ thức về cạnh và đường cao trong tam giác vuông.

 Biết vận dụng các hệ thức trên để giải bài tập.

B CHUẨN BỊ

- Thước thẳng, êke, compa, phấn màu.

- Thước kẻ, compa, êke.

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA HS1: Tính x và y :

(Đưa đề bài và hình vẽ lên bảng phu).

Phát biểu các định lí vận dụng chứng minh

trong bài toán.

HS2: Chữa bài tập số 4(a) tr 90 SBT.

Phát biểu các định lí vận dụng trong chứng

minh.

GV nhận xét bài làm của HS.

Hai HS lên bảng chữa bài tập : HS1, chữa bài 3(a)

y = (Pytago) x.y = 3.4  x.5 = 3.4  x = Kết quả : x = 2,4

Sau đó HS1 phát biểu định lí Pytago và định lí 3.

HS2: Chữa bài tập số 4(a).

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Hoạt động 2 : LUYỆN TẬP

Trang 11

(Đưa đề bài lên bảng phụ).

Yêu cầu HS lên bảng giải.

a) Gợi ý : Dùng Pytago tính AB Dùng

định lí 1 tính BC Từ đó suy ra CH, cuối

cùng tính AC.

b) Gợi ý : Dùng định lí 1 để tính BC, từ đó

suy ra CH Dùng định lí 2 tính CH, cuối

cùng tính AC.

Bài 6/tr90,SBT.

(Đưa đề bài lên bảng phụ).

Yêu cầu HS lên bảng giải

Bài bổ sung 1 :

Cho hình chữ nhật ABCD có chu vi là 28

m, đường chéo AC = 10 m Tính khoảng

cách từ đỉnh B đến đường chéo AC.

Yêu cầu HS hoạt động nhóm để giải bài

này.

Đại diện nhóm lên bảng trình bày bài giải

GV nhận xét bài giải.

Bài bổ sung 2 :

Cho tam giác ABC vuông tại A, có đường

cao AH chia cạnh huyền BC ra thành hai

đoạn thẳng BH và CH Biết AH = 6 cm,

CH lớn hơn BH 5 cm Tính cạnh huyền

BC.

Yêu cầu HS hoạt động nhóm để giải bài

này.

Đại diện nhóm lên bảng trình bày bài giải

GV nhận xét bài giải.

Bài bổ sung 1 :

HS hoạt động nhóm để giải bài này.

Đại diện nhóm lên bảng trình bày bài giải.

HS nhận xét bài làm trên bảng, nghe GV nhận xét chung sau đó ghi bài giải vào vở.

Bài bổ sung 2 :

HS hoạt động nhóm để giải bài này.

Đại diện nhóm lên bảng trình bày bài giải.

HS nhận xét bài làm trên bảng, nghe GV nhận xét chung sau đó ghi bài giải vào vở.

H A

Trang 12

Hoạt động 3 :

HƯỚNG DẪN VỀ NHÀ

- Thường xuyên ôn lại các hệ thức lượng trong tam giác vuông.

- Bài tập về nhà số : 8, 9, 10, 11, 12 tr 90, 91 SBT

 Tính được các tỉ số lượng giác của góc 45 0 và góc 60 0 thông qua ví dụ 1 và ví dụ 2.

 Biết vận dụng vào giải các bài tập có liên quan.

B CHUẨN BỊ

 GV : - Bảng phụ ghi câu hỏi, bài tập, công thức đinhj nghĩa các tỉ số lượng giác của một góc nhọn.

- Thước thẳng, compa, êke, phấn màu.

 HS : - Ôn lại cách viết các hệ thức tỉ lệ giữa các cạnh của hai tam giác đồng dạng.

- Thước thẳng, compa, êke, thước đo độ, phấn màu.

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA Hỏi : Cho hai tam giác vuông ABC

(góc A = 90 0 ) và A / B / C / (góc A / = 90 0 ),

B B/

- Chứng minh hai tam giác đồng dạng.

- Viết các hệ thức tỉ lệ giữa các cạnh

của chúng.

- Dựa vào các tỉ số bằng nhau ở trên,

hãy viết từng cặp tỉ số bằng nhau mà

mỗi vế là tỉ số giữa hai cạnh của cùng

một tam giác.

A

AC B

Trang 13

Hoạt động 2 :

1 KHÁI NIỆM TỈ SỐ LƯỢNG GIÁC CỦA MỘT GÓC NHỌN

a) Mở đầu :

GV chỉ vào  ABC vuông, xét góc

nhọn B, giới thiệu :

AB được gọi là cạnh kề của góc B.

AC dược gọi là cạnh đối của góc B.

BC là cạnh huyền.

(GV ghi chú trên hình)

Hỏi : Hai tam giác vuông đồng dạng

với nhau khi nào?

GV : Ngược lại, khi hai tam giác vuông

đã đồng dạng, có các góc nhọn tương

ứng bằng nhau thì ứng với mỗi cạnh

góc nhọn, tỉ số giữa cạnh đối và cạnh

kề, tỉ số giữa cạnh kề và cạnh đối, giữa

cạnh kề và cạnh huyền là như nhau.

Vậy trong một tam giác vuông tỉ số này

đặc trưng cho độ lớn của góc nhọn đó :

GV yêu cầu HS làm bài

(Đưa đề bài lên bảng phụ).

Xét  ABC có A = 90 0 ,

Mỗi câu trên, chỉ yêu cầu HS trình bày

miệng chứng minh, GV ghi lại trên

AC = BC 2AB 2  2 AB2AB 23 AB 2

AB

3 AB AB

Trang 14

của góc nhọn  trong tam giác vuông

phụ thuộc vào tỉ số giữa cạnh đối và

cạnh kề của góc nhọn đó và ngược lại.

Tương tự độ lớn của góc nhọn  trong

tam giác vuông còn phụ thuộc vào tỉ số

giữa cạnh kề và cạnh đối, cạnh đối và

cạnh huyền, cạnh kề và cạnh huyền.

Các tỉ số này chỉ thay đổi khi độ lớn

của góc nhọn đang xét thay đổi và ta

gọi chúng là tỉ số lượng giác của góc

nhọn đó.

b)

Định nghĩa (toàn bộ phần định nghĩa

này, chỉ yêu cầu HS nghe GV phát biểu

rồi đọc lại trong sgk, không ghi vở)

GV nói : Cho một góc nhọn  Vẽ một

tam giác vuông có một góc nhọn là góc

 đó.

GV vừa nói vừa vẽ, yêu cầu HS vẽ

theo.

- Hãy xác định cạnh đối, cạnh kề, cạnh

huyền của góc  trong tam giác vuông

này?

(HS lên ghi chú trên hình vẽ.)

Sau đó GV giới thiệu định nghĩa các tỉ

số lượng giác của góc  như sgk.

GV vừa phát biểu vừa ghi tóm tắc định

nghĩa này lên bảng.

Yêu cầu HS lên bảng tính sin , cos ,

tg , cotg ứng với hình trên.

Yêu cầu HS đọc lại vài lần định nghĩa.

Căn cứ vào định nghĩa trên hãy cho

biết vì sao tỉ số lượng giác của góc

nhọn luôn dương? Vì sao sin < 1 ;

cos < 1?

Yêu cầu HS làm bài

Chỉ yêu cầu HS trả lời miệng, GV ghi

bảng

HS nghe GV phát biểu định nghĩa.

HS lên bảng tính sin , cos , tg , cotg ứng với hình trên.

HS : các tỉ số lượng giác của góc nhọn trong một tam giác vuông luôn có giá trị dương vì các đó là tỉ số độ dài giữa các cạnh của tam giác Mặt khác trong một tam giác vuông, cạnh huỳen bao giờ cũng lớn hơn cạnh góc vuông, nên : sin < 1 ; cos < 1.

HS trả lời miệng Sin = ; cos = ; tg = cotg =

Trang 15

Ví dụ 1 : (H.15) tr73 SGK.

(Đưa đề bài và hình vẽ lên bảng phụ).

Cho tam giác vuông ABC ( A = 90 0 ) có

B = 45 0 Tính sin45 0 ; cos45 0 ; tg45 0 ;

cotg45 0

Hướng dẫn giải:

Để dể dàng tính được

các tỉ số lượng giác

này ta phải có độ

dài của các cạnh

AB, AC, BC Đặt AB = a, hãy tính BC

theo a

(Việc qui ước độ dài của các cạnh, chỉ

yêu cầu HS nói rồi GV ghi trên hình)

Yêu cầu HS lên bảng điền lời giải vào

bảng phụ :

sin45 0 = ; cos45 0 = ;

tg45 0 = ; cotg45 0 =

Ví dụ 2: (Đưa đề bài và hình vẽ lên

bảng phụ) : Cho tam giác vuông ABC (

A = 90 0 ), B = 60 0 Tính sin60 0 ;

cos60 0 ; tg60 0 ; cotg60 0

.

- Gợi ý : Hãy chọn độ dài của một cạnh

nào đó, chẳng hạn chọn AB = a Tính

độ dài các cạnh còn lại theo a Rồi tính

các tỉ số lượng giác của B .

- Yêu cầu HS hoạt động nhóm để tính.

Sau khi HS giải xong, GV nhận bảng

nhóm để nhận xét lời giải.

HS phát biểu tính cạnh BC.

HS lên bảng điền lời giải vào bảng phụ.

HS đọc đề bài

HS hoạt động nhóm và tính

Hoạt động 3 :

a A

2 a

45 0

a

60 0

A B

C

a

Trang 16

Hãy viết các tỉ số lượng giác của góc

nhọn N

- Nêu định nghĩa các tỉ số lượng giác

của góc nhọn  ?

Hoạt động 4 :

HƯỚNG DẪN VỀ NHÀ

- Ghi nhớ các công thức định nghĩa các tỉ số lượng giác của một góc nhọn.

- Biết cách tính và ghi nhớ các tỉ số lượng giác của góc 45 0 , 60 0

- Bài tập về nhà số : 10, 11, tr 76 sgk Số 21, 22, 23, 24 tr92 SBT.

-Ngµy so¹n :29/9/2006 TiÕt 6 : Tû sè lỵng gi¸c cđa gãc nhän(tiÕp theo)

A MỤC TIÊU

 Củng cố các công thức định nghĩa các tỉ số lượng giác của một góc nhọn

 Tính được các tỉ số lượng giác của ba góc đặt biệt 300, 450, 600

 Nắm vững cac hệ thức liên hệ giữa các tỉ số lượng giác của hai góc phụ nhau

P M

N

Trang 17

 Biết dùng các góc khi cho một trong các tỉ số lượng giác của nó Biết vận dụng vào giải các bài tập có liên quan.

B CHUẨN BỊ

 GV : - Bảng phụ ghi câu hỏi, bài tập, hình phân tích cảu ví dụ 3, ví dụ 4, bảng tỉ số lượng giác của các góc đặt biệt

- Thước thẳng, compa, êke, thước đo độ, phấn màu

 HS : - ÔN tập công thức định nghĩa các tỉ số lượng giác của một góc nhọn;các tỉ số lượng giác của góc 150, 600

- Thước thẳng, compa, êke, thước đo độ,

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRAHS1:

Cho tam giác vuông

Xác định vị trí các cạnh kề, cạnh đối,

cạnh huyền đối với góc 

Viết công thức định nghĩa các tỉ số

lượng giác của góc nhọn 

HS2: Chữa bài tập 11/tr76 sgk

GV nhận xét bài làm của HS

Hai HS lên bảng kiểm tra

- HS1 : điền vị trí các cạnh kề, cạnhđối, cạnh huyền đối với góc 

- Viết công thức định nghĩa các tỉ sốlượng giác của góc nhọn 

HS2 : Chữa bài tập 11/tr76 sgk

AB = = 1,5mSinB = = 0,6 ; CosB = = 0,8TgB = = 0,75 ; CotgB =  1,33SinA = = 0,8 ; CosA = = 0,6TgA = =1,33 ; CotgA =  0,75

HS khác nhận xét bài làm của bạn

Trang 18

Qua ví dụ 1 và 2 các em đã thấy, nếu

cho góc nhọn  , ta tính được các tỉ số

lượng giác của nó Ngược lại, cho một

trong các tie số lượng giác của góc

nhọn  , ta có thể dựng được các góc

đó Sau đây là các ví dụ minh hoạ:

Ví dụ3: Dựng góc nhọn  , biết tg =

3

2

(Đưa đề bài và hình vẽ lên bảng phụ)

Hỏi : giả sử ta dựng được góc  sao

cho tg  = 3 2 Vậy ta phải tiến hành

cách dựng như thế nào?

Tại sao với cách dựng trên ta được tg 

(Trong hai ví dụ trên GV chỉ yêu cầu

HS trình bày miệng, không yêu cầu ghi

2 TỈ SỐ LƯỢNG GIÁC CỦA HAI GÓC PHỤ NHAU

GV yêu cầu HS làm bài

(Đưa đề bài và hình vẽ lên bảng phụ) HS lên bảng lập tỉ số lượng giác củagóc  và 

Qua đó chỉ ra các cặp tỉ số lượng giácbằng nhau

Trang 19

Vậy khi hai góc phụ nhau, các tỉ số

lượng giác của chúng có mối liên hệ

gì?

GV nhấn mạnh lại định lí

Từ định lí, hãy cho biết sin450 = ? ;

tg450 = ?

Câu hỏi tương tự như trên đối với ví dụ

6/sgk

Qua ví dụ 5 và 6, ta có bảng tỉ số lượng

giác của các góc đặt biệt như sau :

(GV giới thiệu bảng tỉ số lượng giác

sgk/tr75)

Ví dụ7 : (Đưa lên bảng phụ)

 Chú ý : GV nêu chú ý sgk/tr75

HS trả lời

HS nghe GV nhấn mạnh lại định lí

Hoạt động 4 :

CỦNG CỐ – LUYỆN TẬP

- Phát biểu định lí về tỉ số lượng giác

của hai góc phụ nhau?

- Bài tập trắc nghiệm : Đúng (Đ) hay

Hoạt động 5 :

HƯỚNG DẪN VỀ NHÀ

- Nắm vững định nghĩa các tỉ số lượng giác của một góc nhọn, hệ thức liên hệgiữa các tỉ số lượng giác của hai góc phụ nhau, ghi nhớ tỉ số lượng giác của cácgóc đặt biệt 300; 450 ; 600

Trang 20

Trang 21

-Ngµy so¹n : 30/9/2006

TiÕt 7: LuyƯn tËp

A MỤC TIÊU

 Rèn cho HS kĩ năng dựng góc khi biết một trong các tỉ số lượng giác của nó

 Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minhmột số công thức lượng giác đơn giản

 Vận dụng các kiến thức đã học để giải các bài tập có liên quan

B CHUẨN BỊ

 GV : - Bảng phụ ghi câu hỏi, bài tập

- Thước thẳng, compa, êke, thước đo độ, phấn màu, máy tính bỏ túi

 HS : - Oân tập công thức định nghĩa các tỉ số lượng giác của một góc nhọn,các hệ thức lượng trong tam giác vuông đã học, tỉ số lượng giác của hai góc phụnhau

- Thước thẳng, compa, êke, thước đo độ, , máy tính bỏ túi

- Bảng phụ nhóm

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRAHS1: Phát biểu định lí về tỉ số lượng

giác của hai góc phụ nhau

- Chữa bài tập 12/tr76,sgk

HS2: Chữa bài tập 13(c,d)/tr77,sgk

HS1: Phát biểu định lí về tỉ số lượnggiác của hai góc phụ nhau

- Chữa bài tập 12/tr76,sgk

HS2: Chữa bài tập 13(c,d)/tr77,sgk

Hoạt động 2 :

LUYỆN TẬP

Bài tập 13(a,b) tr77sgk.

a) Dựng góc nhọn  , biết sin = 3 2

GV yêu cầu một HS nêu cách dựng,

đồng thời GV dựng theo các bước dựng

đó, Yêu cầu HS cùng dựng hình vào vở

Hãy chứng minh : sin = 2 3

Bài tập 13(a,b) tr77sgk.

HS nêu cách dựng

HS cùng dựng hình vào vở

HS chứng minh : sin = 2 3

Trang 22

b) Dựng góc nhọn  , biết cos  = 5 3

Yêu cầu HS hoạt động nhóm

GV kiểm tra vài bảng nhóm, nhận xét

bài giải của HS

Bài 14/tr77,sgk.

Chia lớp thành hai nhóm

- Nữa lớp chứng minh :

- Nữa lớp chứng minh :

b) tg cotg = 1 ; sin2 + cos2 = 1

GV kiểm tra hoạt động của các nhóm

Bài 15tr77,sgk.

(Đưa đề bài lên bảng phụ)

GV : góc B và góc C là hai góc phụ

nhau, do đó biết cosB = 0,8 ta suy ra

được tỉ số lượng giác nào của góc C?

Dựa vào công thức nào để tính được

(Hình vẽ sẵn trên bảng phụ)

Hỏi : Tam giác ABC

có phải là tam giác

vuông hay không ?

vào vở.

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

- Nữa lớp chứng minh : b) tg cotg = 1 ; sin2 + cos2 = 1.Đại diện nhóm lên bảng trình bày bàigiải

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Bài 15tr77,sgk.

SinC = cosC = 0,8Dựa vào công thức sin2 + cos2 = 1

Trang 23

Nêu cách tính x ?

Bài 32 tr 93, 94 SBT.

(Đưa đề bài lên bảng phụ)

GV vẽ hình trên bảng

Để tính DC trước hết ta cần tính DC

Em nào tính được DC ?

HS tính DC theo hai cách khác nhau

- Cách 1 : Dựa vào tgC

- Cách 2 : Dựa vào sinC

HS : Tam giác ABC không phải là tamgiác vuông vì nếu tam giác ABC vuôngtại A thì HB = HC trái với giả thiết

tỉ số lượng giác của hai góc phụ nhau

- Bài tập về nhà số 28, 29, 30, 31, 36 tr 93,94 SBT

- Tiết sau mang bảng số với bốn chữ số thập phân và máy tính bỏ túi để học bảnglượng giác và tìm tỉ số jượng giác

Trang 24

 Có kỉ năng tra bảng hoặc dùng máy tính bỏ túi để tìm các tỉ số lượng giáckhi chop biết số đo góc.

B CHUẨN BỊ

 GV : - Bảng số với bốn chữ số thập phân

- Bảng phụ có ghi một số về cách tra bảng

- Máy tính bỏ túi

 HS : - On lại các công thức định nghĩa các tỉ số lượng giác của góc nhọn,quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau

- Bảng số với bốn chữ số thập phân

- Máy tính bỏ túi

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA

GV nêu yêu cầu kiểm tra

1) Phát biểu định lí tỉ số lượng giác của

hai góc phụ nhau

2) Vẽ tam giác vuông ABC có :

A = 900 ; B =  ; C = 

Nêu các hệ thức giữa các tỉ số lượng

giác của góc  và 

1 HS lên bảng trả lời

1 HS phát biểu định lí

2) Vẽ tam giác vuông ABC có :

A = 900 ; B =  ; C = 

Hoạt động 2 :

1 CẤU TẠO CỦA BẢNG LƯỢNG GIÁC

GV giới thiệu sơ bộ về cấu tạo của

bảng lượng giác như sgk Chủ yếu cho

HS nắm được các nội dung sau của cấu

HS nghe GV nêu cấu tạo của bảnglượng giác

Trang 25

tạo đó :

- Bảng lượng giác bao gồm bảng VIII,

IX, X Để lập bảng lượng giác người ta

sử dụng tính chất tỉ số lượng giác của

hai góc phụ nhau

a) Bảng sin và côsin (bảng VIII)

b) Bảng tang và côtang

GV : Nhận xét trên cơ sở sử dụng phân

hiệu chính của bảng VIII và bảng IX

HS nhận xét : Khi góc  tăng từ 00 đến

900 thì :

- sin , tang tăng

- Cos , cot giảm

Hoạt động 3 :

2 CÁCH TÌM TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN CHO TRƯỚCa) Tìm tỉ số lượng giác của góc nhọn

cho trước bằng bảng số

GV cho HS đọc SGK (tr78) phần a)

Để tra bảng VIII và bảng IX ta cần thực

hiện mấy bước? Đó là những bước nào?

* Ví dụ 1 : Tìm sin46012/

Muốn tìm sin46012/ em tra bảng nào?

Nêu cách tra?

GV treo bảng phụ có ghi sẵn mẫu 1

Muốn tìm cos33014/ em tra bảng nào?

Nêu cách tra?

HS đọc SGK (tr78) phần a)

HS trả lời

HS nêu cách tra bảng VIII

Kết quả : sin46012/  0,7218

HS tra bảng VIII

Tra số độ ở cột 13

Tra số phút ở hàng cuối

Giao của cột và hàng ở trên gần nhấtvới 14/ Đó là cột ghi 12/, và phần hiệuchính 2/

Tra cos(33012/ + 2/)

- cos33012/  0,8368

Trang 26

* Ví dụ 3 : Tìm tg52018/.

Muốn tìm tg52018/ em tra bảng nào?

Nêu cách tra?

Yêu cầu HS làm bài tập (tr 80)

Sử dụng bảng tìm cotg8032/

Muốn tìm cotg8032/ em tra bảng nào?

Nêu cách tra?

GV cho HS làm bài (tr80)

Yêu cầu HS đọc chú ý ở sgk

GV giới thiệu cách tìm tỉ số lượng giác

bằng máy tính bỏ túi

HS đọc kết qủa : tg82013/  7,316

HS dùng máy tính bỏ túi bấm theo GV

HS nêu cách tìm bằng máy tính

Cotg56025/  0,6640

Hoạt động 4 :

CỦNG CỐYêu cầu HS sử dụng bảng số hoặc máy

tính bỏ túi để tìm tỉ số lượng giác của

các góc nhọn sau (làm tròn đến chữ số

thập phân thứ tư)

a) sin25013/

HS cho kết quả :a)  0,9410b)  0,9023

?1

?2

6 5 0 /// 2 5 0 /// tan SHIF 1/ 2

Trang 27

b) cos70010/

c) tg43032/

d) cotg32015/

2 so sánh :

a) sin200 và sin700

b) cotg20 và cotg37040/

c)  0,9380d)  1,5849

2 So sánh :a) HS : sin200 < sin700 (vì 200 <

700)b) cotg20 > cotg37040/ (vì 20 <

37040/)

Hoạt động 5 :

HƯỚNG DẪN VỀ NHÀ

 Làm bài tập 18/tr83, sgk

Trang 28

 GV : - Bảng số, máy tính, bảng phụ ghi mẫu 5, mẫu 6 (tr80,81 sgk).

 HS : - bảng số, máy tính bỏ túi

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA BÀI CỦ

GV yêu cầu kiểm tra

HS1: Khi góc  tăng từ 00 đến 900 thì

các tỉ số lượng giác của góc  thay đổi

như thế nào?

Tìm sin40012/ bằng máy tính bỏ túi Nói

rõ cách dùng máy để tìm

HS1: Khi góc  tăng từ 00 đến 900 thìsin và tg tăng, còn co và cotggiảm

HS sin40012/  0,6455

Hoạt động 2 :

TÌM SỐ ĐO CỦA GÓC NHỌN KHI BIẾT MỘT TỈ SỐ LƯỢNG GIÁC CỦA NÓĐặt vấn đề : ta đã biết tìm tỉ số lượng

giác của một góc nhọn cho trước Bây

giờ các em sẽ được giới thiệu cách tìm

số đo của một góc nhọn khi biết tỉ số

lượng giác của nó

Ví dụ 5: Tìm góc nhọn  (làm tròn đến

phút), biết sin = 0,7837

GV dùng mẫu 5 (sgk) như trên để hướng

dẫn cách tìm số đo của góc 

GV : Ta cũng có thể dùng máy tính bỏ

HS nghe GV đặt vấn đề

Trang 29

túi để tìm số đo của góc  Sau đó GV

hướng dẫn cách tìm :

- Đối với máy fx220 :

- Đối với máy fx500 :

(Hai máy khác nhau ở chổ : bấm phiếm

cuối cùng)

Bài tr81 Tìm  biết cotg = 3,006

Yêu cầu tìm bằng bảng số và bằng máy

tính

Cho HS đọc chú ý ở sgk/tr81

Ví dụ 6 : Tìm góc nhọn  biết sin =

0,4470 (làm tròn đến độ)

Bài tr81 Tìm góc nhọn  biết cos

= 0,5547 (làm tròn đến độ)

Yêu cầu tìm hai cách : bằng bảng số và

- Tìm các tỉ số lượng giác sau đây bằng máy tính : sin70013/ ; tg43010/

- Tìm số đo độ của góc  (làm tròn đến độ) biết : sin = 0,2368 ; cotg = 3,215

Hoạt động 4 :

HƯỚNG DẪN VỀ NHÀ

- Luyện tập để sử dụng thành thạo bằng số và máy tính bỏ túi tìm tỉ số lượng giáccủa một góc nhọn và ngược lại tìm số đo của góc nhọn khi biết tỉ số lượng giác của nó

- đọc kĩ bài đọc thêm tr81,sgk

- Bài tập về hnà số 21/tr84 sgk Và số 40, 41, 42, 43 tr95, SBT

- Tiết sau luyện tập

?3

?4

Trang 30

TiÕt 10: LuyƯn TËp

A MỤC TIÊU

 HS có kĩ năng tra bảng hoặc dùng máy tính bỏ túi để tìm tỉ số lượng giác khicho biết số đo góc và ngược lại tìm số đo góc nhọn khi biết một tỉ số lượng giáccủa góc đó

 HS thấy được tính đồng biến của sin và tang, tính nghịch biến của côsin vàcôtang để so sánh được các tỉ số lượng giác khi biết góc  , hoặc so sánh cácgóc nhọn  khi biết tỉ số lượng giác

B CHUẨN BỊ

 GV : - Bảng số, máy tính bỏ túi, bảng phụ

 HS : - Bảng số, máy tính bỏ túi

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA BÀI CỦHS1 :

a) Tìm cotg32015/ bằng cách dùng máy

tính hoặc bảng số

b) Chữa bài tập 42 tr95, các phần a, b,

c

(Đưa đề bài lên bảng phụ)

bài tập 42 tr95, a) CN =  5,292 (định lí Pytago)b) ABN  23034/ (Áp dụng sin)c) CAN  55046/ (Áp dụng cos)

Hoạt động 2 :

LUYỆN TẬP

Dựa vào tính đồng biến của sin và

nghịch biến của cos các em hãy làm

bài tập sau :

Bài 22(b,c,d) tr84,sgk.

HS :b) cos250 > cos63015/

c) tg73020/ > tg450

d) cotg20 > cotg37040/

Bài bổ sung, so sánh :

a) sin380 = cos520 mà cos520 < cos380

A

D N

C B

9

6,4 3,6

34 0

Trang 31

Bài bổ sung, so sánh :

a) sin380 và cos380

b) tg270 và cotg270

GV yêu cầu HS giải thích cách so sánh

của mình

Bài 47 tr96,SBT.

Cho x là một góc nhọn, biểu thức sau

đây có giá trị âm hay dương? Vì sao?

GV yêu cầu hoạt động nhóm

- Nữa lớp giải câu a)

- Nữa lớp giải câu b)

Yêu cầu : Nêu các cách so sánh nếu có,

và cách nào đơn giản hơn

- Nếu x > 450  900–x <450  x > 900–x

 sinx > sin(900 –x)  sinx > cosx hay sinx –cosx > 0

d) HS giải tương tự

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Bài 24tr 84,sgk.

a) Cách 1 :Cos140 = sin760 ; cos870 = sin30

Mà sin30 < sin470 < sin760 < sin780

 cos870 < sin470 < cos140 < sin780

Cách 2 : Dùng máy tính (hoặc bảnglượng giác) ta có :

Sin780  0,9781Cos140  0,9702sin470  0,7314cos870  0,0523Từ đó  cos870 < sin470 < cos140 <sin780

Nhận xét cách 1 đơn giản hơn

Câu b) Trình bày hai cách tương tự

 cotg380 < tg620 < cotg250 < tg730

Trang 32

Bài 25tr 84,sgk.

Muốn so sánh tg250 với sin250, em làm

thế nào?

Muốn so sánh tg450 và cos450 các em

làm thế nào?

c) tg450 = 1 ; cos450 = 2 2 , mà 1 = 2 2 >

2 2

Trang 33

 GV : - Bảng phụ, máy tính bỏ túi, thước kẻ, êke, thước đo độ.

 HS : - Bảng phụ nhóm, máy tính bỏ túi, thước kẻ, êke, thước đo độ

C TIẾN TRÌNH DẠY – HỌC

a) Cạnh huyền và các tỉ số lượng giác của góc B và góc C

b) Cạnh góc vuông còn lại và các tỉ số lượng giác của góc B và góc C

- Các hệ thức trên chính là hệ thức giữa các cạnh và các góc của tam giácvuông Bài này các em sẽ học trong hai tiết

Hoạt động 2 :

1 CÁC HỆ THỨCGọi HS viết lại các hệ thức trên

Hãy diễn đạt bằng lời các hệ thức đó

Trang 34

góc đối, góc kề là đối với cạnh đang

GV : Trong hình vẽ, AB là đoạn đường

máy bay bay trong 1,2 phút; BH là độ

cao máy bay đạt được sau khi bay 1,2

phút đó

- Nêu cách tính AB?

- Tính BH?

GV nhận xét bài làm của HS

Ví dụ 2 Yêu cầu HS đọc đề bài trên

khung đầu trang sgk/85

Gọi 1 HS lên bảng vẽ lại bài toán bởi

tam giác với các số liệu đã biết

- Khoảng cách giữa chân chiếc thang

và chân tường là gì trong hình vẽ? Hãy

tính

HS đọc định lí

- HS nêu cách tính AB

- HS tính BH = 5km

HS nhận xét bài làm của bạn

HS lên bảng vẽ hình

HS : là cạnh AC

HS tính AC =  1,27(m)Vậy cần đặt chân thang cách tườngmột khoảng là 1,27m

c) Phân giác BD của góc B

GV yêu cầu HS tính độ dài đoạn thẳng

với ba chữ số thập phân

Yêu cầu HS hoạt động nhóm để giải

HS hoạt động nhóm

sin

AB BC BC

21cm 1

45 0

Trang 35

GV nhận xét đánh giá.

b

Đại diện nhóm khác trình bày câu c

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Hoạt động 4 :

CỦNG CỐ

- Yêu cầu HS nhắc lại định lí về cạnh và góc trong tam giác vuông

- Nhắc lại cách tìm số đo góc bằng mày tính bỏ túi khi biết tỉ số lượng giác của góc đó

Trang 36

Ngµy so¹n: 8/10/2006

Gãc trong tam gi¸c vu«ng( TiÕp theo )

A MỤC TIÊU

 HS hiểu được thuật ngữ “Giải tam giác vuông” là gì?

 HS vận dụng được các hệ thức trên trong việc giải tam giác vuông

 HS thấy được việc ứng dụng các tỉ số lượng giác để giải một số bài toán thựctế

B CHUẨN BỊ

 GV : - Thước kẻ, bảng phụ

 HS: - Oân lại các hệ thức trong tam giác vuông

- Thước kr, êke, thước đo độ, máy tính bỏ túi

- Bảng phụ nhóm, bút dạ

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRA BÀI CUHS1: Phát biểu định lí và viết các hệ

thức về cạnh và góc trong tam giác

vuông (có hình vẽ minh hoạ)

HS2: Chữa bài tập 26/tr88,sgk

(Tính cả chiều dài và đường xiên của

tia nắng từ đỉnh tháp đến mặt đất)

GV nhận xét bài làm của HS và ghi

điểm

HS1: Phát biểu định lí HS2: Chữa bài tập 26/tr88,sgk

- AB  58m

- BC  104m

Hoạt động 2 :

2 ÁP DỤNG GIẢI TAM GIÁC VUÔNG

GV giới thiệu điều kiện để giải được

một tam giác vuông như sgk,tr86

Vậy để giải một tam giác vuông ta cần

biết bao nhiêu yếu tố ? trong đó số

cạnh như thế nào?

GV nên lưu ý :

- Số đo góc làm tròn đến độ

- Số đo độ dài làm tròn đến chữ số thập

Trang 37

phân thứ ba.

Ví dụ3 tr87,sgk

(Đưa đề bài và hình vẽ lên bảng phụ)

Để giải tam giác vuông ABC, cần tính

cạnh, góc nào?

Hãy nêu cách tính

Tính góc C : Có thể sử dụng tỉ số lượng

giác nào?

GV yêu cầu HS làm ,sgk

Trong ví dụ 3, hãy tính cạnh BC mà

không áp dụng định lí Pytago

Ví dụ 4,tr87,sgk

(Đưa đề bài và hình vẽ lên bảng phụ)

Để giải tam giác vuông PQO, ta cần

tính cạnh nào?

- Hãy nêu cách tính

Yêu cầu HS làm bài ,sgk

Trong ví dụ 4, hãy tính cạnh OP, OQ

qua cosin của góc P và Q

Ví dụ 5,tr87,sgk

(Đưa đề bài và hình vẽ lên bảng phụ)

GV yêu cầu HS tự giải Gọi một HS

lên bảng giải

Hỏi : Có thể tính MN bằng cách nào

khác?

So sánh mức độ làm bài ở hai cách

trên

GV nhận xét và chữa bài làm của HS

Một HS đọc to ví dụ3

HS vẽ vào vở

AB

C  320  B  900 –320  580.HS: Tính góc C và B trước

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

?3

Trang 38

Yêu cầu HS làm bài 27/tr88,sgk.

(Đưa đề bài và hình vẽ lên bảng phụ)

Yêu cầu HS giải theo nhóm

Sau khi HS làm bài, GV gọi HS đại

diện nhóm lên bảng trình bày bài giải

trên bảng phụ nhóm

GV nhận xét và chữa bài làm của HS

HS hoạt động theo nhóm

Kết quả :a) B = 600

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Hoạt động 4 :

HƯỚNG DẪN VỀ NHÀ

- Tiếp tục rèn kĩ năng giải tam giác vuông

- Bài tập 27 (làm lại vào vở), 28,tr88,89 sgk

- Bài 55 đến 58 tr97,SBT

Trang 39

Ngµy so¹n:18/10/2006

A MỤC TIÊU

 HS vận dụng được các hệ thức trong việc giải tam giác vuông

 HS được thực hành về áp dụng các hệ thức, tra bảng hoặc sử dụng máy tính bỏ túi, cách làm tròn số

 Biết vận dụng các hệ thức và thấy được ứng dụng các tỉ số lượng giác để giải quyết các bài toán thực tế

B CHUẨN BỊ

 GV : - Thước kẻ, bảng phụ

 HS : - Thước kẻ, bảng phụ nhóm

C TIẾN TRÌNH DẠY – HỌC

Hoạt động 1 :

KIỂM TRAHS1 : a) Giải tam giác vuông là gì?

b) Cho tam giác ABC, biết AB = 8 cm, AC = 5cm; BAC = 200 Tính SABC

Hoạt động 2 :

BÀI TẬPBài 30,tr89,sgk

(Đưa đề bài và hình vẽ lên bảng phụ)

Từ tỉ số này các em có thể tính được

CN và BN, vì biết tổng của hai đoạn

38 tg

BN CN= 

 BN = 4,675

 AN = =  3,652

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Trang 40

Gợi ý : các em có thể làm xuất hiện

tam giác vuông Bằng cách nào?

Bài 32,tr89,sgk

(Đưa đề bài và hình vẽ lên bảng phụ)

Yêu cầu một HS lên bảng vẽ hình

Hỏi : Chiều rộng của khúc sông biểu

thị bằng đoạn nào?

Đường đi của thuyền biểu thị bằng

đoạn nào?

- Nêu cách tính quảng đường thuyền đi

được trong 5 phút (AC) từ đó tính AB

GV nhận xét và chữa bài làm của HS

HS : Kẻ AH  CD tại H

a) Tam giác ABC có :

AB = AC SinC =  6,472 (cm) b) ADC =

Trong tam giác vuông ACH có :

AH = AC.sinC =  7,690 (cm) Xét tam giác vuông AHD có :

HS nhận xét bài làm trên bảng, nghe

GV nhận xét chung sau đó ghi bài giải vào vở.

Hoạt động 3 :

CỦNG CỐ

- Phát biểu định lí về cạnh và góc trong tam giác

- Để giải một tam giác vuông cần biết số cạnh và số góc như thế nào?

Ngày đăng: 18/09/2013, 16:10

HÌNH ẢNH LIÊN QUAN

Bảng phụ). - HINH HOC 9 (ca nam)
Bảng ph ụ) (Trang 6)
Bảng phụ). - HINH HOC 9 (ca nam)
Bảng ph ụ) (Trang 8)
Bảng phụ : - HINH HOC 9 (ca nam)
Bảng ph ụ : (Trang 15)
Bảng phụ) - HINH HOC 9 (ca nam)
Bảng ph ụ) (Trang 34)
Hình veõ : - HINH HOC 9 (ca nam)
Hình ve õ : (Trang 47)
Hình có tâm đối xứng không? Tâm đối - HINH HOC 9 (ca nam)
Hình c ó tâm đối xứng không? Tâm đối (Trang 58)
Bảng phụ). - HINH HOC 9 (ca nam)
Bảng ph ụ) (Trang 69)
Hình để HS đối chiếu. Lưu ý yêu cầu - HINH HOC 9 (ca nam)
nh để HS đối chiếu. Lưu ý yêu cầu (Trang 77)
Hình vẽ) thì đoạn thẳng nối tâm OO /  có - HINH HOC 9 (ca nam)
Hình v ẽ) thì đoạn thẳng nối tâm OO / có (Trang 93)
Hình học 9 - HINH HOC 9 (ca nam)
Hình h ọc 9 (Trang 112)
Hình 22  SGKtr77 - HINH HOC 9 (ca nam)
Hình 22 SGKtr77 (Trang 122)
Hình trụ như SGK. - HINH HOC 9 (ca nam)
Hình tr ụ như SGK (Trang 161)
HĐ2: HÌNH NÓN - HINH HOC 9 (ca nam)
2 HÌNH NÓN (Trang 165)
Hình trụ ? - HINH HOC 9 (ca nam)
Hình tr ụ ? (Trang 166)
Hình : trụ, nón, cầu. - HINH HOC 9 (ca nam)
nh trụ, nón, cầu (Trang 176)

TỪ KHÓA LIÊN QUAN

w