Bài mới: HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG HS lần lượt đứng tại chỗ nhắc lại các kiến thức đã học về phép nhân đơn thức với đa thức, nhân đa thức với đa thức.. Bài mới: HOẠT ĐỘNG CỦA TH
Trang 1Tiết 1 Ngày soạn: 22/8/2013
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
HS lần lượt đứng tại chỗ nhắc lại các
kiến thức đã học về phép nhân đơn
thức với đa thức, nhân đa thức với đa
thức
GV đưa bài tập 1 lên bảng phụ
3 HS lên bảng thực hiện
Dưới lớp làm vào vở
GV đưa đề bài lên bảng phụ
? Muốn chứng minh một biểu thức
không phụ thuộc vào giá trị của biến,
Giải
M = -1 là một hằng số, vậy biểu thức Mluôn có giá trị bằng -1 giá trị này không phụthuộc vào giá trị của x và y
Bài tập 3: Tính giá trị của biểu thức:
N = 2x(x-3y)-3y(x+2)-2(x2-3y-4xy) với
Trang 2? Trước khi tính giá trị biểu thức N, ta
3 Củng cố: Nhắc lại các dạng bài tập đã chữa.
4 Hướng dẫn về nhà: Xem lại các bài tập đã làm.
Trang 3Tiết 2 Ngày soạn: 29/8/2013
- Nắm được định nghĩa, các tính chất, dấu hiệu nhận biết hình thang cân Vẽ được hình thang cân Sử dụng định nghĩa, tính chất của hình thang cân để chứng minh và tính toán Biết chứng minh tứ giác là hình thang cân.
- Rèn luyện tính chính xác và cách lập luận chứng minh hình học.
II CHUẨN BỊ:
1 Giáo viên: Bảng phụ
2 Học sinh:
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV yêu cầu HS đứng tại chỗ nhắc lại
các kiến thức đã học về tứ giác và
hình thang
GV đưa ra bài tập 1: Chứng minh
rằng trong một tứ giác tổng hai
đường chéo lớn hơn tổng hai cạnh
đối?
HS lên bảng trình bày
GV đưa ra bài tập 2: Cho tam giác
ABC cân tại A, phân giác BD và CE
Gọi I là trung điểm của BC, J là trung
điểm của ED, O là giao điểm của BD
và CE Chứng minh:
I CÁC KIẾN THỨC CẦN NHỚ:
1.Tứ giác:
Tứ giác ABCD 2.Hình thang:
Trong các AOB và COD theo bất đẳngthức tam giác lần lượt có:
OA + OB > AB
OC + OD > CDCộng hai vế hai bất đẳng thức trên ta được:
C
OA + OC + OB + OD > AB + CDHay AC+ BD >AB + CD
Trang 4a)Tứ giác BEDC là hình thang cân.
b)Do ED//BC (cmt) nên =
Mà (cmt)
Do đó = BED cân tại E
BE =ED Mà BE =DC Nên BE = ED = DC
c)AI là phân giác của góc A.(1)
AJ là tia phân giác của góc A (2)
AO là phân giác của góc A (3)
Từ (1), (2) và (3), ta có các tia AI, AJ, AO trùngnhau Vậy bốn điểm A, I, J, O thẳng hàng
3 Củng cố: - Nhắc lại các dạng bài tập đã chữa.
IJO
Trang 5I MỤC TIÊU:
- HS ôn lại 3 hằng đẳng thức đầu tiên
- Rèn kỹ năng giải các bài tập tìm x, biến đổi các biểu thức đại số, thực hiệnthành thạo các phép toán
II CHUẨN BỊ:
1 Giáo viên: Thước
2 Học sinh: Ôn tập kiến thức về các hằng đẳng thức.
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
Tính (2x + 1) 2 ; (3 - x) 2 ; (x – 2y)(x + 2y)
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
HS đứng tại chỗ phát biểu lại 3
điền vào dấu “?”
HS thảo luận tại chỗ sau đó lên
bảng điền
Dưới lớp quan sát, nhận xét bài trên
bảng
? Muốn tính nhanh kết quả của các
biểu thức đã cho ta làm như thế nào?
Giải
a) Vế trái là bình phương của một tổng Muốn
x2+?+4y2 thành bình phương của một tổng thì
x2+?+4y2 phải có dạng A2+2AB+B2.Vậy (x+2y)2 = x2+4xy+4y2
Hướng dẫn
A=10000: B=1C=502-492+482-472+……+22-12
Trang 63 Củng cố:
- Nhắc lại các dạng toán đã chữa
4 Hướng dẫn về nhà:
- Xem lại các bài tập đã làm
Ngày giảng: 20/9/2013
Trang 7- Có kĩ năng vận dụng bài toán tổng hợp.
Lí thuyết: - Định nghĩa đường trung bình của tam giác, của hình thang
- Định lí về đường trung bình của tam giác, của hình thang
b) Các hoạt động:
* Hoạt động 1: Đường trung bình của tam giác (20’)
GV: Cho HS làm bài tập sau:
Cho tam giác ABC , điểm D thuộc cạnh
AC sao cho AD = DC Gọi M là trung
điểm của BC I là giao điểm của BD và
AM Chứng minh rằng AI = IM
GV: Yêu cầu HS vẽ hình ở bảng
HS: Vẽ hình ở bảng
GV: Hướng dẫn cho HS chứng minh bằng
cách lấy thêm trung điểm E của DC
GV: Cho HS làm bài tập 2: Cho ∆ABC ,
các đường trung tuyến BD, CE cắt nhau ở
G Gọi I, K theo thứ tự là trung điểm GB,
GC CMR: DE // IK, DE = IK
GV: Vẽ hình ghi GT, KL bài toán
GV: Nêu hướng CM bài toán trên?
HS:
GV: ED có là đường trung bình của
∆ABC không? Vì sao?
HS: ED là đường trung bình của ∆ABC
BD và AM Chứng minh rằng AI = IM.Giải:
I
D E
C M
B
A
Gọi E là trung điểm của DC
Vì ∆BDC có BM = MC, DE = EC nên BD // ME, suy ra DI // EM
Do ∆AME có AD = DE, DI // EM nên AI = IM
A
Vì ∆ABC có AE = EB, AD = DC nên
ED là đường trung bình, do đó ED // BC,
ED = BC Tương tụ: IK // BC, IK =
Trang 8GV: Yêu cầu HS trình bày BC.
Suy ra: IK // ED, IK = ED
* Hoạt động 2: Chữa Các bài tập trong SBT
GV: Cho HS làm bài tập 37/SBT
HS: Đọc đề bài, vẽ hình ghi GT, KL
GV: Làm thế nào để tính được MI?
HS: Ta CM: MI là đường trung bình của
∆ABC để suy ra MI
GV: Yêu cầu HS chứng minh MI là
đường trung bình của ∆ABC, MK là
đường trung bình của ∆ADC
HS: Chứng minh ở bảng
GV: MI là đường trung bình của ∆ABC,
MK là đường trung bình của ∆ADC nên
Vì MN là đường trung bình của hìnhthang ABCD nên MN // AB //CD
Bài tập: Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm hai đường chéo bằng nữa hiệu hai đáy
- Củng cố kiến thức phân tích đa thức thành nhân tử bằng các phương pháp
- Biết tìm nhân tử chung và đặt nhân tử chung Rèn kĩ năng dùng hằng đẳngthức để phân tích đa thức thành nhân tử
II CHUẨN BỊ:
1 Giáo viên: Bảng phụ.
2 Học sinh: ôn tập các kiến thức đã học
Trang 9III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ: nêu các phương pháp phân tích đa thức thành nhân tử
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
? Thế nào là phân tích đa thức thành
2 Phân tích đa thức thành nhân tử bằngphương pháp đặtnhân tử chung: Khi cáchạng tử của đa thức có chung một nhân tử,
ta có thể đặt nhân tử chung ra ngoài dấungoặc theo công thức:
A.B + A.C = A(B + C)
II Bài tập:
Bài tập 1: Phân tích các đa thức sau thành
nhân tử:
a) 2x2 - 4x = 2x(x - 2)b) - 15x3 - 5x2 + 10x
= 5x.3x2 - 5x.x + 5x.2
= 5x(3x2 - x + 2)c) x2 - x = x (x - 1)d) 5x2(x - 2y) -15x(x-2y = 5x(x - 2y)(x - 3)e) 3(x - y) - 5x(y - x)
= 3(x - y) + 5x(x - y) = (3+5x)(x - y)
Bài tập 2: Tìm x
5x(x - 200) - x + 200 = 0 5x(x - 200) - (x - 200) = 0
Trang 10- Củng cố kiến thức phân tích đa thức thành nhân tử bằng các phương pháp.
GV giới thiệu một số phương pháp phân tích khác
- Rèn kĩ năng phân tích đa thức thành nhân tử
II CHUẨN BỊ:
Trang 112 Học sinh: Ôn tập các kiễn thức đã học
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV giới thiệu một số phương pháp
khác phân tích đa thức thành nhân tử
Hai đa thức (viết dưới dạng thu gọn)
là đồng nhất khi và chỉ khi hệ số của
các đơn thức đồng dạng chứa trong
hai đa thức đó phải bằng nhau
*) Khi phân tích thành nhân tử, ta phải
vận dụng linh hoạt sáng tạo các
phương pháp và phải biết phối hợp
GV hướng dẫn: Với đa thức ax2+bx+c
được biến đổi thành ax2+b1x+b2x+c sao
cho Như vậy cần tách hạng tử
bx = b1x+b2x sao cho b1.b2= ac
Cách làm như sau: -Tìm tích ac
I KIẾN THỨC CẦN NHỚ:
1 Phương pháp tách một hạng tử thànhnhiều hạng tử:
2 Phương pháp thêm bớt cùng mọt hạngtử
3 Phương pháp đổi biến:
4 Phương pháp đồng nhất hệ số (phươngpháp hệ số bất định)
II BÀI TẬP:
Bài tập 1: Dùng nhiều cách khác nhau để
phân tích đa thức sau thành nhân tử:
A= x2-4x+3
Cách 1: Tách hạng tử giữa:
A = x2-4x+3 = x2-x-3x+3 =x(x-1)-3(x-1)=(x-1)(x-3)
Trang 12-Viết tích ac dưới dạng tích của hai số
mà tổng bằng b
GV đưa ra bài tập 2, hướng dẫn HS
cách thêm bớt hạng tử
Lưu ý: Khi thêm bớt cùng một hạng tử
vào đa thức phải xuất hiện những nhóm
hạng tử sao cho có thể dùng hằng đẳng
thức hoặc đặt nhân tử chung
? Muốn chứng minh A chia hết cho 3
Trang 13- Biết tìm nhân tử chung và đặt nhân tử chung Rèn kĩ năng dùng hằng đẳngthức để phân tích đa thức thành nhân tử.
II CHUẨN BỊ:
1 Giáo viên: MTCT
2 Học sinh: MTCT
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
? Thế nào là phân tích đa thức thành
2 Phân tích đa thức thành nhân tử bằngphương pháp đặtnhân tử chung: Khi cáchạng tử của đa thức có chung một nhân tử,
ta có thể đặt nhân tử chung ra ngoài dấungoặc theo công thức:
A.B + A.C = A(B + C)
II Bài tập:
Bài tập 1: Phân tích các đa thức sau thành
nhân tử:
a) 2x2 - 4x = 2x(x - 2)b) - 15x3 - 5x2 + 10x
= 5x.3x2 - 5x.x + 5x.2
= 5x(3x2 - x + 2)c) x2 - x = x (x - 1)d) 5x2(x - 2y) -15x(x-2y = 5x(x - 2y)(x - 3)e) 3(x - y) - 5x(y - x)
= 3(x - y) + 5x(x - y) = (3+5x)(x - y)
Bài tập 2: Tìm x
5x(x - 200) - x + 200 = 0 5x(x - 200) - (x - 200) = 0
Trang 14? Để tính nhanh ta làm như thế nào? d x2 - 64y2 =…= ( x - 8y)( x + 8y)
- Giúp hs hiểu sâu hơn về phép đối xứng trục, luyện các bài tập có sử dụng
phép đối xứng trục và áp dụng phép đối xứng rục vào các bài toán thực tế
II.CHUẨN BỊ CỦA GV VÀ HS:
- Sgk + bảng phụ + thước kẻ
III.TIẾN TRÌNH DẠY HỌC :
Trang 15HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ
HOẠT ĐỘNG 1 : ÔN TẬP LÝ THUYẾT
Gv cho hs nhắc lại các kiến thức về hai
điểm đối xứng qua một đường thẳng, hai
hình đối xứng qua một đường thẳng, trục đối
xứng của một hình
Hs nhắc lại các kiến thức cơ bản vềphép đối xứng trục theo yêu cầu của gv
HOẠT ĐỘNG 2 : BÀI TẬP ÁP DỤNG Bài tập 1:
Cho góc xOy, A là một điểm nằm trong
góc đó Gọi B là điểm đối xứng của A qua
Ox, C là điểm đối xứng của A qua Oy
a chứng minh tam giác OBC cân
Gv gọi hs lên bảng trìmh bày c/m
để tíng góc BOC ta làm như thế nào?
So sánh góc BOC với góc xOy
Hs nhận xét cách trình bày của bạn
Bài tập số 2:
Cho tam giác nhọn ABC, Gọi H là trực
tâm của tam giác, D là điểm đối xứng của H
qua AC
a chứng minh AHC = ADC
b Chứng minh tứ giác ABCD có
các góc đối bù nhau
Gv gọi hs lên bảng vẽ hình
để c/m AHC = ADC ta làm như thế
nào
để c/m tứ giác ABCD có các góc đối bù
nhau ta làm như thế nào?
Gv gọi hs lên bảng c/m
Gv gọi hs nhận xét bài làm của bạn
Gv chốt lại cách c/m câu a và câu b
Hs ghi đề bài và vẽ hình vào vở
Hs cả lớp suy nghĩ tìm cách c/m 1hs lên bảng trình bày c/m
= 900 + 900 + 1800
Trang 16IV- HƯỚNG DẪN VỀ NHÀ
Về nhà xem lại cỏc bài tập đó làm trờn lớp và học kỹ lý thuyết về đối xứng trục
- ễn tập cỏc kiến thức về tõm đối xứng
-Tiếp tục rèn luyện kỷ năng c/m hình học, chứng minh 2
điểm đối xứng nhau qua 1điểm
- Rèn luyện kỹ năng vẽ hình,
Trang 17Hoạt động 2: Kiểm tra bài cũ
- Nờu định nghĩa hai điểm đối xứng nhau
Cho , điểm A nằm trong gúc đú
Gọi B là điểm đối xứng với A qua Ox, C là
điểm đối xứng với A qua Oy Chứng minh
rằng điểm B đối xứng vúi điểm C qua O
E, F lần lợt là trung điểm của AB, AC nên
EF là đờng trung bình của ABC nên
F
E
4
3 2 1
C
x
Trang 18GV hệ thống bài dạy: Nhắc lại kiến
thức chính đã vạn dụng vào bài
Hoạt động 5: Hớng dẫn, dặn dò
Học bài: Nắm chắc những kiến
thức vừa đợc củng cố trong bài
Chuẩn bị cho tiết sau: Luyện tập
chương I (đại số)
EF // AB và EF = BC BEFC là hình thang
BEFC là hình thang cân B=CABC
cân tại A AB = AC AE = AF Anằm trên tia phân giác của góc xOyCác tứ giác BEFO, CFEO là Hbh vì
EF // OB // OC, EF = OB = OC
HS phát biểu để củng cố, khắc sâubài học
Ghi nhớ để khắc sâu và vận dụng vào các bài khác
Theo dõi GV hớng dẫn để về nhà tiếp tục giải
Ghi nhớ để học bàiGhi nhớ bài học cần chuẩn bị cho tiết sau
Trang 19Tiết 10 Ngày soạn: 02/11/2013
Ngày giảng: 09/11/2013
ÔN TẬP CHƯƠNG I ĐẠI SỐ
I MỤC TIÊU:
- Hệ thống kiến thức của chương I Luyện các bài tập về nhân đa thức, các
hằng đẳng thức đáng nhớ, phân tích đa thức thành nhân tử, phép chia đa thức
nhớ, các phương pháp phân tích đa thức
thành nhân tử, và các quy tắc chia đơn thức
cho đơn thức, chia đa thức cho đơn thức,
chia đa thức cho đa thức
Hs nhắc lại các quy tắc theo yêucầu của giáo viên
2 Luyện tập Bài tập 1:
A,Với giá trị nào của a thì đa thức
g(x) = x3 - 7x2 ax chia hết cho đa thức x
Câu g lưu ý thứ tự thực hiện cácphép tính và sử dụng các hằngđẳng thức
Hs lên bảng trình bày bài giải
Hs lên bảng trình bày bài giải
đa thức g(x) chia hết cho đathức
Trang 20đa thức f(x) chia hết cho đa thức x- 1 và
đa thức x + 2 khi nào? kết quả câu a : a = - 10 câu b : a = -8/3, b = -12
3 Hướng dẫn về nhà.
Xem lại các bài tập đã giải ôn tập toàn bộ kiến thức đã học của chương 1
Trang 21Tiết 11 Ngày soạn: 08/11/2013
Hoạt động 2: Kiểm tra bài cũ
- Thế nào là khoẳng cách giữa hai đường
thẳng song song?
- Nêu tính chất của các điểm cách đều
một đường thẳng cho trước
Hoạt động 3: Tổ chức luyện tập
Bài tập 1: Cho điểm A nằm ngoài
đường thẳng d Điểm M di chuyển trên
đường thẳng d Gọi B là diểm đối xứng
với A qua M Điểm B di chuyển trên
đường nào?
- Gọi HS lên bảng vẽ hình
- HD: Chứng minh điểm B luôn cách d
một khoảng không đổi
B H
(Cạnh huyền- góc nhọn)
=>AK=BH
Điểm B cách d một khoảng cố định bằng đoạn
AK không đổi nên B di chuyển trên đưởng thẳng xy//d và cách d một khoảng bằng AK
BT129(sbt)ΔADM đều nên
DH = AM;
ΔBME đều nên
EK = BM
Trang 22=>I di chuyển trên đoạn thẳng LN là
đường trung bình của tam giác đều RAB
và L’N’ là đường trung bình của tam giác
đều SAB
Hoạt động 4: Hướng dẫn về nhà
Học bài: Nắm chắc kiến thức đã vận
dụng vào các bài tập, nắm chắc kiến
thức về đường thẳng song với đường
thẳng cho trước
Làm các bài tập còn lại trong SGK
Chuẩn bị bài: đọc và xem trước bài:
Hình thoi
DH + EK = ( AM + BM ) = AB
IP // DH // EK mà ID = IEnên PH = PK
IP là đường trung bìnhhình thang DHEK
IP = ( DH +EK ) =
AB không đổi
=>I đường thẳng song song với AB và cách
AB một khoảng bằng AB nằm trên 2 nửa
mp bờ AB
* Khi M A thì I L; khi M B thì I N
=>I di chuyển trên đoạn thẳng LN là đường trung bình của tam giác đều RAB và L’N’ là đường trung bình của tam giác đều SAB
HS ghi nhớ để học tốt nội dung bài học và những kiến thức đã vận dụng vào bài
Ghi nhớ để làm bài tập và chuẩn bị tốt cho tiết sau
M
S
N' L'
P
H K B
E N I
A
L DR
Trang 23- Giáo viên: - Hệ thống câu hỏi và bài tập cần dùng trong giờ học
- Học sinh: - Ôn lại các kiến thức cơ bản có liên quan
III TIẾN TRÌNH DẠY- HỌC
HOẠT ĐỘNG 1 : ÔN TẬP LÝ THUYẾT
Gv cho hs nhắc lại các kiến thức về
các loại tứ giác đã học hình thang, hình
HOẠT ĐỘNG 2 : BÀI TẬP ÁP DỤNG Bài tập số 1:
Cho hình bình hành ABCD có I, K lần
lượt là trung điểm của các cạnh AB, CD
biết rằng IC là phân giác góc BCD và ID
là phân giác góc CDA
Gọi O là giao điểm của BD và AC ta có
P là trọng tâm của tam giác ABD nên AP
= 2/3AO suy ra AP = 1/3 AC
Q là trọng tâm của tam giác BCD nên
CQ = 1/3 AC vậy CQ = QP = AP
MPNQ là hình bình hành (MN cắt PQtại trung điểm của mỗi đường )
để MPNQ là hình chữ nhật thì PQ =
Trang 24điều kiện gì từ đó suy ra điều kiện của
hình bình hành ABCD
để MPNQ là hình thoi thì cần thêm
điều kiện gì?
MN mà MN = AB và PQ = 1/3 AC nênhình bình bành ABCD cần có AB = 1/3
AC thì tứ giác MPNQ là hình chữ nhật
để MPNQ là hình thoi thì MN PQ suy
ra AB AC thì MPNQ là hình thoiVậy MPNQ là hình vuông khi AB AC
và AB = 1/3 AC
IV HƯỚNG DẪN VỀ NHÀ
ôn tập các kiến thức về tứ giác xem lại các bài tập đã giải
Học kỹ các định nghĩa, tính chất, dấu hiệu nhận biết các loại tứ giác đã học
Ngày giảng: 29/11/2013
Trang 25RÚT GỌN PHÂN THỨC
I MỤC TIÊU:
- Củng cố cho học sinh cách rút gọn phân thức đại số
- Rèn kĩ năng biến đổi, rút gọn phân thức
II CHUẨN BỊ:
- Giáo viên: Thước
- Học sinh: Ôn tập các kiến thức đã học
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HS nhắc lại định nghĩa, tính chất
cơ bản của phân thức
Nêu được cách rút gọn phân thức
GV đưa ra các bài tập, HS lên
đại số khi tử thức và mẫu thức đã
được viết dưới dạng tích Cần
tránh các sai lầm: =
3y(?)
hoặc = 3(?)
I KIẾN THỨC CẦN NHỚ:
1 Định nghĩa: Phân thức đại số là một biẻu thức
có dạng A/B, trong đó A, B là những đa thức, B 0
2 Hai phân thức bằng nhau:
nếu A.D=B.C (B,D )
3 Tính chất cơ bản của phân thức:
a/ (M là đa thức khác 0)b/ (N là nhân tử chung của A,B)c/ (Quy tắc đổi dấu)
Trang 26x
; 2/ ; 3/ ; 4/
x x
x x
3 Củng cố: Nhắc lại các dạng bài tập đã chữa.
Ngày giảng: 02/12/2013
LUYỆN TẬP NHÂN DẠNG HÌNH BÌNH HÀNH
I MỤC TIÊU:
- HS nắm được định nghĩa, các tính chất, dấu hiệu nhận biết hình bình hành
HS biết vẽ hình bình hành, chứng minh tứ giác là hình bình hành
Trang 27- Rèn kỹ năng suy luận, vận dụng tính chất của hbh để chứng minh hai đường thẳng
bằng nhau 2 góc bằng nhau, 2 đường thẳng song song, 3 điểm thẳng hàng Rèn tính cẩn
thận, chính xác trong chứng minh và vẽ hình
II CHUẨN BỊ:
- Giáo viên: Thước, eke
- Học sinh: Thước, eke.
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV đưa ra các câu hỏi giúp HS nhớ
lại định nghĩa, tính chất, dấu hiệu
nhận biết hình bình hành
GV đưa ra bài tập: Cho hình bình
hành ABCD, O là giao điểm hai
C D
N
E F
Trang 28Từ (1) và (2) suy ra AC, BD, EF đồng quytại O.
3 Củng cố: Nhắc lại các dạng bài tập đã chữa.
Ngày giảng: 02/12/2013 LUYỆN TẬP CÁC PHÉP TOÁN VỀ PHÂN THỨC ĐẠI SỐ
I MỤC TIÊU:
- Cúng cố các quy tắc thực hiện các phép tính về phân thức đại số
- Rèn kĩ năng tính toán cho học sinh
II CHUẨN BỊ:
- Giáo viên: Thước
- Học sinh: Ôn tập các kiến thức đã học
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
? Muốn cộng hai phân thức ta làm như thế
nào?
? Thế nào là hai phân thức đối nhau?
HS lên bảng viết công thức tổng quát phép trừ
hai phân thức, phát biểu bằng lời
GV đưa ra bài tập 1
HS hoạt động cá nhân vào vở
GV lưu ý HS: Khi cộng các phân thức kết quả
cuối cùng được viết dưới dạng thu gọn
3 Củng cố: Nhắc lại các dạng bài tập đã chữa.
* VN: Ôn lại quy tắc cộng, trừ các phân thức Xem bài nhân, chia phân thức.
biểu thức hữu tỉ
Trang 29Tiết 16 Ngày soạn: 06/12/2013
Ngày giảng: 13/12/2013
I MỤC TIÊU :
- Củng cố kiến thức về cách thực hiện các phép tính phân thức Giá trị của
một phân thức, điều kiện xác định của phân thức
- Rèn kĩ năng tính toán cho học sinh
II- CHUẨN BỊ
- Giáo viên: Thước, các bài tập
Trang 30- Học sinh: Ôn tập các kiến thức đã học.
III- TIẾN TRÌNH DẠY HỌC
1 Kiểm tra: Nêu cách tìm điều kiện để phân thức được xác định.
Vậy không tồn tại giá trị của x để A=0
Trang 313 Hướng dẫn về nhà.
ôn tập toàn bộ kiến thức đã học của chương II
- Giáo viên: Bảng phụ, Thước, eke
- Học sinh: Thước, eke
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
Trang 322 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV yêu cầu học sinh nhắc lại định nghĩa,
tính chất, dáu hiệu nhận biết hình chữ nhật
và hình vuông
Bài tập 1: Cho tam giác vuông ABC (AB
>AC), đường cao AH (H thuộc CB) Vẽ ở
miền ngoài ta giác hình vuông ABDE và
ACFK Chứng minh rằng:
a/ D,A, F thẳng hàng
b/ BEKC là hình thang cân
GV đưa bài tập 1 HS đọc bài toán, lên
bảng vẽ hình, ghi GT - KL
HS làm tại chỗ trong vòng 5 phút
Từng HS lên bảng trình bày
Bài tập 2: Cho ABC, các trung tuyến
BM và CN cắt nhau tại G Gọi P là điểm
đối xứng của M qua G, gọi Q là điểm đối
Ta có:
+ + = 450+ 900+ 450
= 1800
Vậy D, A, F thẳng hàng
b/ BEKC là hình thang cân
EB DF (đường chéo hình vuông)
CK DF (đường chéo hình vuông)Suy ra EB//KC nên BEKC là hìnhthang
Hình thang BEKC có =nên là hình thang cân
Bài 2.
a/ Tứ giác MNPQ là hình bìnhhành vì có: G là trung điểm haidường chéo MP và NQ
b/ Nếu ABC cân tại A thì AB
=AC, khi đó ta có:
AMB = ANC (c.g.c)Suy ra MB = NC Lại có MP=NQ
P Q
Trang 35- Rèn kỹ năng suy luận, vận dụng tính chất của hcn để chứng minh hai đường thẳng
bằng nhau 2 góc bằng nhau, 2 đường thẳng song song Rèn tính cẩn thận, chính xác trong
chứng minh và vẽ hình
II CHUẨN BỊ:
1 Giáo viên: Bảng phụ
2 Học sinh:
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV đưa ra các câu hỏi giúp HS hệ
thống lại các kiến thức đã học liên
c)Dấu hiệu nhận biết:
B áp dụng vào tam giác vuông:
II BÀI TẬP:
Bài tập 1: Cho hình chữ nhật ABCD Kéo
dài BC và AD thêm những đoạn CE = DF
= DC Kéo dài DC một đoạn CH = BC.Nối A với E, Fvới H Chứng minh AEvuông góc với FH
Hướng dẫn
Ta có:CH =BC = AD (gt)
CD = DF = CE (gt)Suy ra: DH = DC + CH = AD + DF = AF Mặt khác, do CE// =DF(gt)
FE = CD Do đó EF =DF và EF// CD
A
B C
Trang 36DH = AF(cmt); DF = EF (cmt) Suy ra: DHF = FAE (c.g.c).Suy ra:
Lại có: (đối đỉnh),
do đó Suy ra: FH AE(đpcm)
Bài tập 2: Cho ABC, các trung tuyến
BM và CN cắt nhau tại G Gọi P là điểmđối xứng của M qua G, gọi Q là điểm đốixứng của N qua G
a/ Tứ giác MNPQ là hình gì? Vì sao?
b/ Nếu ABC cân tại A thì tứ giác MNPQ
là hình gì? Vì sao?
Hướng dẫna/ Tứ giác MNPQ là hình bình hành vì có:
G là trung điểm hai dường chéo MP vàNQ
b/ Nếu ABC cân tại A thì AB =AC, khi
đó ta có:
AMB = ANC (c.g.c)Suy ra MB = NC Lại có MP=NQ
- HS nắm được định nghĩa, các tính chất, dấu hiệu nhận biết hình thoi
- Rèn kỹ năng suy luận, vận dụng tính chất của thoi để chứng minh hai đường thẳng
bằng nhau 2 góc bằng nhau, 2 đường thẳng song song
P Q
Trang 372 Học sinh:
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
? Hình thoi là hình như thế nào?
? CM BMN đều ta làm như thế nào?
HS lên bảng trình bày, dưới lớp
làm vào vở
I KIẾN THỨC CẦN NHỚ:
1 Định nghĩa:
ABCD có AB = BC = CD = DAABCD là hình thoi
b Hình bình hành có hai cạnh kề bằngnhau là hình thoi
c Hình bình hành có hai đường chéovuông góc với nhau là hình thoi
a/ Chứng minh BMN đều
b/ Gọi P là điểm đối xứng của N qua
BC Chứng minh MP song song vớiCD
Hướng dẫn:
Trang 38Suy ra: ME=PF mà ME//PF
Tứ giác MPFE là hbh nên MP//CD
3 Củng cố: Nhắc lại các dạng bài tập đã chữa.
- Củng cố kiến thức phân tích đa thức thành nhân tử bằng các phương pháp
- Biết tìm nhân tử chung và đặt nhân tử chung Rèn kĩ năng dùng hằng đẳngthức để phân tích đa thức thành nhân tử
II CHUẨN BỊ:
1 Giáo viên: Bảng phụ
2 Học sinh:
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
Trang 392 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
? Thế nào là phân tích đa thức thành
2 Phân tích đa thức thành nhân tử bằngphương pháp đặtnhân tử chung: Khi cáchạng tử của đa thức có chung một nhân tử,
ta có thể đặt nhân tử chung ra ngoài dấungoặc theo công thức:
A.B + A.C = A(B + C)
II Bài tập:
Bài tập 1: Phân tích các đa thức sau thành
nhân tử:
a) 2x2 - 4x = 2x(x - 2)b) - 15x3 - 5x2 + 10x
= 5x.3x2 - 5x.x + 5x.2
= 5x(3x2 - x + 2)c) x2 - x = x (x - 1)d) 5x2(x - 2y) -15x(x-2y = 5x(x - 2y)(x - 3)e) 3(x - y) - 5x(y - x)
= 3(x - y) + 5x(x - y) = (3+5x)(x - y)
Bài tập 2: Tìm x
5x(x - 200) - x + 200 = 0 5x(x - 200) - (x - 200) = 0
Trang 40Tiết 12: LUYỆN TẬP HÌNH VUÔNG
I MỤC TIÊU:
- HS nắm được định nghĩa, các tính chất, dấu hiệu nhận biết hình vuông
- Rèn kỹ năng suy luận, vận dụng tính chất của hình vuông để chứng minh hai đường
thẳng bằng nhau 2 góc bằng nhau, 2 đường thẳng song song
- Rèn tính cẩn thận, chính xác trong chứng minh và vẽ hình.
II CHUẨN BỊ:
1 Giáo viên: Bảng phụ
2 Học sinh:
III TIẾN TRÌNH LÊN LỚP:
1 Kiểm tra bài cũ:
2 Bài mới:
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ GHI BẢNG
GV đưa ra các câu hỏi giúp HS tái hiện lại
và khắc sâu các kiến thức liên quan đến
2 Tính chất:
ABCD là hình vuông
3 Dấu hiệu nhận biết:
a Hình chữ nhật có hai cạnh kềbằng nhau là hình vuông
b Hình chữ nhật có hai đườngchéo vuông góc với nhau là hìnhvuông
c Hình chữ nhật có một đườngchéo là phân giác của góc là hìnhvuông
d Hình thoi có một góc vuông làhình vuông
e Hình thoi có hai đường chéobằng nhau là hình vuông
II BÀI TẬP:
Bài tập 1:Cho tam giác vuôngABC (AB >AC), đường cao AH(H thuộc CB) Vẽ ở miền ngoài tagiác hình vuông ABDE và ACFK.Chứng minh rằng:
a/ D,A, F thẳng hàng
b/ BEKC là hình thang cân
c/ AH đi qua trung điểm I của EK.d/ Các đường AH, DE, FK, cắtnhau tại một điểm?
E
I