1. Trang chủ
  2. » Giáo án - Bài giảng

Tiet 31 32 xac suat cua bien co (tt)

3 259 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 80,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

- Biết không chứng minh công thức cộng xác suất và công thức nhân xác suất.. Về kỷ năng: Giúp học sinh có kỷ năng: - Biết vận dụng quy tắc cộng xác suất, quy tắc nhân xác suất trong bài

Trang 1

Ngày soạn: 1.11.2015 Tuần: 11

6.11.2015 (Tiết 32)

Bài 2: XÁC SUẤT CỦA BIẾN CỐ ( tt)

A Mục tiêu: Qua bài học, học sinh nắm được

1 Về kiến thức:

- Biết được khái niệm: Biến cố hợp, biến cố xung khắc, biến cố đối, biến cố giao, biến cố độc lập

- Biết tính chất: P() = 0; P() =1; 0 ≤ P(A) ≤1

- Biết (không chứng minh) công thức cộng xác suất và công thức nhân xác suất

2 Về kỷ năng: Giúp học sinh có kỷ năng:

- Biết vận dụng quy tắc cộng xác suất, quy tắc nhân xác suất trong bài tập đơn giản.

- Biết dùng máy tính bỏ túi hỗ trợ tính xác suất

3 Về tư duy, thái độ

- Nghiêm túc, tự giác, hứng thú trong nhận thức tri thức mới

- Liên hệ giữa bài tóan thực tế và lí thuyết

B Chuẩn bị của học sinh và giáo viên:

1 Chuẩn bị của giáo viên

SGK, tài liệu giàm tải của bộ GD-ĐT,…

2 Chuẩn bị của học sinh

- Học và làm BT đầy đủ

- Nghiên cứu SGK

C Phương pháp dạy học

Gợi mở vấn đáp thông qua hoạt động điều khiển tư duy

D Tiến trình kiểm tra.

1.Ổn định lớp:

- Kiểm tra sĩ số.

- Ổn định trật tự

2 Kiểm tra bài cũ

Định nghĩa xác suất của biến cố, viết CT tính xác suất

3 Bài mới

Tiết 31 Hoạt động 1: Các tính chất của xác suất

Hoạt động của giáo viên và học sinh Ghi bảng – Trình chiếu

G: Yêu cầu HS trả lời các câu hỏi sau:

- tính P(), P()

- Với biến cố A bất kì, hãy nhận xét giá trị của

P(A)

- A, B xung khắc Hãy tính P(AB)

H: Hiểu và thực hiện nhiệm vụ

- Dựa vào đ/n xs: P() = 1, P()= 0

- Vì 0 n(A)  n() nên 0  P(A)  1

- Ta có: A B = 

nên n(AB) = n(A) +n(B)

Suy ra: P(AB) =

II Tính chất của xác suất

1 Định lí

a) P()= 0; P() = 1 b) 0 P(A)  1, với mọi biến cố A

c) Nếu A, B xung khắc thì

Trang 2

( ) ( ) ( ) ( ) ( )

( ) ( )

G: Ta có các tính chất (ghi lên bảng)

G: Từ t/c c), hãy tính P(A) + ( ) P A

H: bằng 1.

P(AB) = P(A) + P(B) (công thức cộng xác suất)

Hệ quả:

Với mọi biến cố A ta có:

  1 ( )

Hoạt động 2: Củng cố các tính chất

Hoạt động của giáo viên và học sinh Ghi bảng – Trình chiếu

G: Ghi đề bài,cho HS lên giải

H: lên bảng giải

G: Yêu cầu HS giải tìm P(B) ,P(D) sử dụng

cách dùng biến cố đối

H: Lên giải

G: Bổ sung, khắc sâu hệ quả

H: Đọc hiểu đề VD2

G: Lưu ý HS cách xác định các biến cố và

không gian mẫu

H: xác định không gian mẫu

G: Hướng dẫn HS giải.

H: Theo dõi.

H: Đọc hiểu đề VD3

G: Lưu ý HS cách xác định các biến cố và

không gian mẫu

H: xác định không gian mẫu

G: Hướng dẫn HS giải.

H: Theo dõi

2 Ví dụ VD1: Gieo con súc sắc 2 lần.Tính xác suất các biến cố

A: “Kết quả 2 lần gieo như nhau”

B:” Kết quả 2 lần gieo khác nhau”

C:”ít nhất 1 lần xuất hiện mặt 6 chấm”

D: “không lần nào xuất hiện mặt 6 chấm”

ĐS:

P(A)=6/36 = 1/6 P(B) = 1- 1/6 = 5/6 P(C)=11/36

P(D)=1-11/36 = 25/36

VD2: Một hộp chứa 26 quả cầu được đánh số từ 1 đến

26 Lấy ngẫu nhiên 1 quả Tính P các biến cố

a A: “Nhận quả ghi số lẻ”

b B: “Nhận quả ghi số chia hết cho 4”

c: C: “Nhận quả ghi số chia hết cho 9”

d D= A C

ĐS:

1

26

P A C

VD3: 1 hộp gồm 7 quả cầu: 3 xanh, 4 đỏ Lấy ngẫu

nhiên đồng thời 2 quả Tính xác suất sao cho 2 quả đó:

a Khác màu.

b Cùng màu.

BG:

Không gian mẫu là tập hợp gồm các tổ hợp chập hai của

7 quả cầu n() =C  (kết quả đồng kn)72 21 Gọi A: “2 quả khác màu”

B: “2 quả cùng màu”

a n(A) = 3.4 =12 P(A) = 12 4

21 7

b n(B) = 9 P(B) = 9 3

21 7

VD4: Từ 1 hộp chứa 12 thẻ gồm: 5 thẻ đỏ, 4 thẻ xanh, 3

Trang 3

H: Đọc hiểu đề VD4

G: Lưu ý HS cách xác định các biến cố và

không gian mẫu

H: xác định không gian mẫu

G: Hướng dẫn HS giải.

H: Theo dõi

thẻ vàng Lấy ngẫu nhiên đồng thời 3 thẻ

a Tính n()

b Tính xác suất các biến cố:

A:”Lấy được 3 thẻ màu vàng”

B:” Lấy được 3 thẻ màu đỏ”

C:” Lấy được 3 thẻ màu xanh”

D:” Lấy được 3 thẻ khác màu ”

BG:

a n() = 3

12 220

C 

b P(A) = 1/220 n(B) = 3

5 10

C  => P(B) = 10/220

n(C) =C  => P(C) = 4/220=1/5543 4 P(D) = 60/220=3/11

Tiết 32 Hoạt động 3: Các biến cố độc lập, công thức nhân xác suất.

Hoạt động của giáo viên và học sinh Ghi bảng – Trình chiếu

G: Yêu cầu HS tính

H:Hiểu và thực hiện nhiệm vụ.

GV NX: Nếu sự xảy ra của 1 biến cố không ảnh

hưởng đến xác suất của biến cố khác, ta nói hai

biến cố đó độc lập

Như vậy, trong VD trên A,C độc lập; A,B độc

lập

III Các biến cố độc lập, công thức nhân xác suất VD: Gieo một đồng tiền, sau đó gieo một con súc sắc a) Mô tả không gian mẫu.

b) Tính xác suất của các biến cố.

A: “Đồng tiền xuất hiện mặt ngửa”

B: “ Con súc sắc xuất hiện mặt 5 chấm”

C: “Con súc sắc xuất hiện mặt chẵn”

c) CT: P(AB) = P(A)P(B).

P(AC) = P(A)P(C)

BG – ĐS

a{ 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6S S S S S S N N N N N N }

( ) ; ( ) ; ( )

c Suy ra từ câu b.

Nếu sự xảy ra của 1 biến cố không ảnh hưởng đến xác suất của biến cố khác, ta nói hai biến cố đó độc lập

KL: A và B là hai biến cố độc lập

 P(AB) = P(A) P(B)

4 Củng cố

- Yêu cầu HS nắm được các tính chất của xác suất, định nghĩa hai biến cố độc lập, công thức nhân xác suất

- Chữa BT 1,2,3 /74 SGK

5 Dặn dò - Hướng dẫn học ở nhà.

BT 4, 5 –SGK Tiết sau chuẩn bị MTBT

Làm BT: Trong 1 hộp chứa 5 quả bóng trắng, 6 quả bóng xanh,7 quả đỏ.Lấy ngẫu nhiên đồng thời 4 quả.

Tính xác suất để 4 quả lấy ra có đủ cả 3 màu

RÚT KINH NGHIỆM:

………

Ngày đăng: 23/08/2016, 15:02

TỪ KHÓA LIÊN QUAN

w