Bài tập1:Trong các biểu thức đại số sau, biểu thức nào là đơn thức?. Đơn thức: a Khỏi niệm sgk/ 30 b Vớ dụ: Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến, mà mỗi b
Trang 2Hà: 10; x; xyz; 3x3
An: Hãy lấy cho
mình những ví dụ
về biểu thức đại
số?
An: Bạn lấy ví dụ như
vậy là sai đó là các đơn
thức chứ không phải các
biểu thức đại số
Trang 3Hãy nêu ý kiến của mình Theo các em bạn nào nói đúng bạn nào nói sai? Đơn thức là gì?
Trang 41 Đơn thức
Trang 5− 3 x y x;2 3
5
?1 Cho các biểu thức đại số:
4xy2; 3 – 2y; 10x+ y;
5(x + y); − ÷
2 2x2y; -2y; 5; x.
Hãy sắp xếp các biểu thức trên thành 2 nhóm:
NHÓM I:
Những biểu thức có
chứa phép cộng, phép
trừ
NHÓM II:
Những biểu thức còn lại.
Trang 6− 3 x y x;2 3
5
?1 Cho các biểu thức đại số:
4xy2; 3 – 2y; 10x+ y; 5(x + y)
−
Hãy sắp xếp các biểu thức trên thành 2 nhóm:
NHÓM I:
Những biểu thức có chứa
phép cộng, phép trừ
NHÓM II:
Những biểu thức còn lại
5(x + y); − 3 x y x;2 3
5
4xy2; 3 – 2y; 10x+ y;
−
5(x + y);
Trang 71 Đơ n th c ứ
Đơn thức là những biểu thức như thế nào ?
Đơn thức là những biểu thức như thế nào ?
1 số 1 bi nế
Tích giữa các số và các biến
− 3 x y x;2 3
5
4xy2; 2x2y; -2y;
NHÓM II :
−
2
a) Khái niệm:
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
Đơn thức là biểu thức đại số
chỉ gồm một số hoặc một
biến hoặc một tích giữa các
số và các biến
Là những đơn thức
Trang 8Bài tập1:Trong các biểu thức đại số sau, biểu thức nào là đơn thức?
a 0
b 9 x 2 yz
c 15,5
3
5
d 1- x
9
Số 0 được gọi là đơn thức không.
là đơn thức không
c) Chú ý:
e 2x 3 y 2 zxy 2
f 9 x 2 y + x 2
1 Đơ n th c ứ
a) Khái niệm (sgk/ 30)
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
Trang 92 3 3
1
3 x y x z
−
9; y; 2xy;
b 9 x2yz e 2x3y2zxy2
ẹụn thửực thu goùn
ẹụn thửực chửa thu goùn
2 Đơn thức thu gọn:
a) Khỏi niệm :
Theỏ naứo laứ ủụn thửực thu goùn?
Theỏ naứo laứ ủụn thửực thu goùn?
Phaàn heọ soỏ Phaàn bieỏn Phaàn heọ soỏ Phaàn bieỏn
Soỏ 0 ủửụùc goùi laứ ủụn thửực khoõng.
c) Chỳ ý:
1 Đơn thức:
a) Khỏi niệm ( sgk/ 30)
b) Vớ dụ:
Đơn thức thu gọn là đơn thức
chỉ gồm tích của một số với
các biến, mà mỗi biến đã
đượcư nâng lên lũy thừa với số
mũ nguyên dưương (moói bieỏn
chổ ủửụùc vieỏt moọt laàn)
Đơn thức thu gọn là đơn thức
chỉ gồm tích của một số với
các biến, mà mỗi biến đã
đượcư nâng lên lũy thừa với số
mũ nguyên dưương (moói bieỏn
chổ ủửụùc vieỏt moọt laàn)
Trang 101 Đơ n th c: ứ
a) Khái niệm (sgk/ 30)
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
c) Chú ý:
2 Đơ n th c thu g n ứ ọ
a) Khái niệm (sgk/ 31)
b) Chú ý: (sgk/ 31)
Bài tập 2:Trong các đơn thức sau, đơn thức nào là đơn thức thu gọn? Chỉ ra phần hệ số và phần biến của đơn thức đó
2
d)3x y e) -10xy 5 f)5xy zyx 2 3;
Caâu Heä soá Phaàn bieán
2
x y
5
xy
-1 3 -10
d) e)
a)5 b) - y c)xyx
Trang 111 Đơn thức :
a) Khái niệm (sgk/30)
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
c) Chú ý:
2 Đơ n th c thu g n: ứ ọ
a) Khái niệm (sgk/31)
b) Chú ý: (sgk/31)
3 Bậc của đơn thức:
Cho đ n th c: 2xơ ứ 5y3z
Cho đ n th c: 2xơ ứ 5y3z
Bi n x có s m làế ố ũ
T ng các s m c a các ổ ố ũ ủ
bi n là ế
: 5
: 5+3+1= 9
Bi n y có s m làế ố ũ
Bi n z có s m làế ố ũ : 3
: 1
bao nhiêu?
Ta nói 9 là b c c a ậ ủ
đ ơ n th c ứ 2x5y3z
Bậc của đơn thức là gì?
a) Khái niệm
c) Chú ý: (sgk/31)
b) Ví dụ: -10xy 5 có bậc là 6
- S th c khác 0 ố ự là đ n ơ
th c ứ b c không ậ
- S th c khác 0 ố ự là đ n ơ
th c ứ b c không ậ
-S 0 ố đ ượ c coi là đ ơ n
th c ứ không có b c ậ
- S 0 ố đ ượ c coi là đ ơ n
th c ứ không có b c ậ
*B c c a ậ ủ đ n th c có ơ ứ h s ệ ố
khác 0 là t ng s m c a t t ổ ố ũ ủ ấ
c các bi n có trong ả ế đ ơ n
th c ứ đó.
*B c c a ậ ủ đ n th c có ơ ứ h s ệ ố
khác 0 là t ng s m c a t t ổ ố ũ ủ ấ
c các bi n có trong ả ế đ ơ n
th c ứ đó.
Trang 121 Đơ n th c: ứ
a) Khái niệm (sgk/ 30)
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
c) Chú ý:
2 Đơn thức đồng dạng:
a) Khái niệm (sgk/ 31)
b) Chú ý: (sgk/ 31)
3 Bậc của đơn thức:
a) Khái niệm (sgk/ 31)
c) Chú ý: (sgk/ 31)
b) Ví dụ: -10xy 5 có bậc là 6
4 Nhân hai đơn thức:
Trang 13y4 x
4 Nhân hai đơn thức:
Ví dụ:
Nhân 2 đơn
Vậy muốn nhân hai đơn thức ta làm như thế nào?
Vậy muốn nhân hai đơn thức ta làm như thế nào?
Trang 141 Đơ n th c: ứ
a) Khái niệm (sgk/ 30)
b) Ví dụ: 1 2 3 3
3 x y x z
−
9; y; 2xy;
c) Chú ý:
2 Đơn thức đồng dạng:
a) Khái niệm (sgk/ 31)
b) Chú ý: (sgk/ 31)
3 Bậc của đơn thức:
a) Khái niệm (sgk/ 31)
c) Chú ý: (sgk/ 31)
b) Ví dụ: -10xy 5 có bậc là 6
4 Nhân hai đơn thức:
- Để nhân hai đơn thức ta
nhân hệ số với hệ số,
phần biến với phần biến.
- Để nhân hai đơn thức ta
nhân hệ số với hệ số,
phần biến với phần biến.
?3 Tìm tích của
3
1
Trang 153
Bài tập 3: Tính tích của các đơn thức sau
rồi tìm bậc đơn thức nhận được: Bài tập 3: Tính tích của các đơn thức sau
rồi tìm bậc đơn thức nhận được:
NHĨM : Chẵn a) − 2 xy z và ( 5)y z t5 4 − 4 3 5
3
NHĨM : Lẻ
Trang 16( )
=
5 4 4 3 5
9 7 5
2 a) xy z ( 5)y z t
3
2 5 x.y y z z t
3
10 xy z t
3
−
= − − ÷
=
5 4 2
9 3
13 b) ( 2)xy z t y z
3 13
2 .x.y y z z.t
3
26 xy z t 3
Bài giải:
Đơn thức có bậc
là: 22
Đơn thức có bậc
là: 22
Đơn thức có bậc là:14 Đơn thức có bậc là:14
Trang 17SƠ ĐỒ TƯ DUY TÓM TẮT KIẾN
THỨC VỀ ĐƠN THỨC
SƠ ĐỒ TƯ DUY TÓM TẮT KIẾN
THỨC VỀ ĐƠN THỨC
ĐƠN THỨC
Nhân các hệ số
với nhau và
nhân phần biến
với nhau.
Nhân các hệ số
với nhau và
nhân phần biến
với nhau.
Mỗi biến đã được nâng lên luỹ thừa với số mũ nguyên dương.
Mỗi biến đã được nâng lên luỹ thừa với số mũ nguyên dương
Số 0:
đơn
thức
không
có bậc
Số 0:
đơn
thức
không
có bậc
Số thực
khác 0:
đơn
thức bậc
0
Số thực
khác 0:
đơn
thức bậc
0
Trang 18HƯỚNG DẪN VỀ NHÀ
• Học thuộc, nắm chắc khái niệm đơn thức, đơn thức thu gọn, bậc của đơn thức Cách nhân hai đơn thức
• Làm bài tập: 1014( SGK trang 32)
•Xem trước bài: Đơn thức đồng dạng.