1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 61

5 151 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 247,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị hàm số C 2.. Viết phương trình tiếp tuyến với đồ thị C, biết rằng khoảng cách từ tâm đối xứng của đồ thị C đến tiếp tuyến là lớn nhất.. PHẦN RIÊNG 3

Trang 1

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG

Môn thi : TOÁN (ĐỀ 61)

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)

Câu I (2.0 điểm)

Cho hàm số y = (C)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)

2 Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất

Câu II (2.0 điểm)

1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x [ 0 ; ]

2 Giải hệ phương trình

2

Câu III (1.0 điểm)

Tính tích phân 3

2 0

1

x e dx

x

Câu IV (1.0 điểm)

Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx  2xyz

Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1)

Câu V (1.0 điểm)

Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c Tính thể tích của tứ diện ABCD

PHẦN RIÊNG ( 3.0 điểm)

Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không được chấm điểm)

A Theo chương trình nâng cao

Câu VIa (2.0 điểm)

1 Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0 Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy

tâm hình vuông CC’D’D Tính bán kính mặt cầu đi qua các điểm B, C’, M, N

Câu VIIa (1.0 điểm)

Giải bất phương trình

2

0

B Theo chương trình chuẩn

Câu VIb (2.0 điểm)

1 Cho elip (E) : 4x2 + 16y2 = 64.Gọi F1, F2 là hai tiêu điểm M là điểm bất kì trên (E).Chứng tỏ rằng

tỉ số khoảng cách từ M tới tiêu điểm F2 và tới đường thẳng x = 8

3 có giá trị không đổi

2 Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q):

x + 2y + 3z + 3 = 0 Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q)

Câu VIIb (1.0 điểm)

10

2A xA xx C x  (

k n

C , k n

A là tổ hợp, chỉnh hợp chập k của n phần tử)

HẾT

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh số báo danh

Trang 2

ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010.

Môn thi : TOÁN (ĐỀ 61)

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)

ĐIỂM

Câu I

(2.0đ)

1

(1.0đ)

TXĐ : D = R\{1}

0.25

Chiều biến thiên

1 0 (x 1)

0.25

Bảng biến thiên

1 +

-

1

-y

y'

x - 1 +

Hàm số nghịc biến trên ( ;1)và (1;)

Hàm số không có cực trị

0.25

Đồ thị.(tự vẽ)

Giao điểm của đồ thị với trục Ox là (0 ;0)

Vẽ đồ thị

Nhận xét : Đồ thị nhận giao điểm của 2 đường tiệm cận I(1 ;1) làm tâm đối xứng

0.25

2.(1.0đ) Giả sử M(x0 ; y0) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối

xứng đến tiếp tuyến là lớn nhất

1

x

2 0

1

0

x

x y

0.25

4 0

2 1 1 1

x x

1

t t

2

0.25

f’(t) = 0 khi t = 1

Bảng biến thiên

từ bảng biến thiên ta c

d(I ;tt) lớn nhất khi và

chỉ khi t = 1 hay

0.25

Trang 3

-+

f(t) f'(t) x

2 0

1

0 0

0

2

1 1

0

x x

x

 + Với x0 = 0 ta có tiếp tuyến là y = -x

Câu

II(2.0đ)

1

(1.0đ)

Phương trình đã cho tương đương với

2(cos4x + cos2x) = (cos2x + 1) + sin2x

0.25

2cos3x= 3 osx+sinx

c

0.25

2

+

6

6

6

k



0.25

12

k x

 



0.25

2.(1.0đ)

x y

Hệ phương trình

0.25

y x

(do 2yx)( x y  y) 1 0  )

0.25

Trang 4

B D

A

C P

M

N

3

3

2

x

x



3 2

0 log 4

x x

0.25

Với x 0 thay vao (2) ta được y = 0

2 log 4

3 2

1 log 4 2

2 log 4

3 2

1 log 4 2

0.25

Câu III

2 0

1

x

2

x

1 2 1 0

x

I x e dx Đặt t = x3 ta có

1

1

0

Ta tính

2

x

x

0.25

Khi đó

2

t

Vậy I = I1+ I2

1

3

0.25

Câu IV

(1.0đ)

0.25

8

8 x  y z 2

0.25

Câu V

(1.0đ)

Qua B, C, D lần lượt dựng các đường thẳng

Song song với CD, BD, BC cắt nhau tại M, N, P

Ta có MN = 2BD, MP = 2CD, NP = 2BC

từ đó ta có các tam giác AMN, APM, ANP

vuông tại A Đặt x = AM, y = AN, AP = z ta có

12

2(acb b)( ca )(abc )

1.0

Trang 5

B' Y

X

Z

N

D'

C'

A'

C

B M

Cõu

VIa

(2.0đ)

1

(1.0đ)

Gọi A là giao điểm d1 và d2 ta cú A(3 ;0)

Gọi B là giao điểm d1 với trục Oy ta cú B(0 ; - 4)

Gọi C là giao điểm d2 với Oy ta cú C(0 ;4)

0.5

Gọi BI là đường phõn giỏc trong gúc B với I thuộc OA khi đú ta cú

I(4/3 ; 0), R = 4/3

0.5

2

Ta cú M(1 ;0 ;0), N(0 ;1 ;1)

B(2 ;0 ;2), C’(0 ;2 ;2)

Gọi phương tỡnh mặt cầu đi qua 4 điểm

M,N,B,C’ cú dạng

x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0

Vỡ mặt cầu đi qua 4 điểm nờn ta cú

5 2

5

2

4

A

A D

C

D







 Vậy bỏn kớnh R = A2B2C2 D  15

1.0

Cõu

VIIa

(1.0đ)

Cõu

VIb

(2.0đ)

1

(1.0đ)

bất phương trỡnh

3 3

3

log 4

0

x x

3

0 6

x x

0.25

0.25

Ta cú F1( 12;0), ( 12;0)F2 Giả sử M(x0 ; y0)thuộc (E) H là hỡnh chiếu của M trờn

3

x  Ta cú MF2 = a - cx0/a = 8 3 0

2

x

0.5

3

x

Vậy MF2

0.5

2

(1.0đ) Ta cú AB(1;1;1),n Q(1; 2;3), AB n; Q   (1; 2;1)

Vỡ  AB n; Q  0

 nờn mặt phẳng (P) nhận AB n; Q

 

làm vộc tơ phỏp tuyến Vậy (P) cú phương trỡnh x - 2y + z - 2 = 0

1.0

Cõu

VIIb

(1.0đ)

Chú ý: Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì đợc đủ điểm từng phần nh đáp án quy định

Ngày đăng: 26/07/2015, 07:39

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên - Đề thi thử đại học môn Toán số 61
Bảng bi ến thiên (Trang 2)

TỪ KHÓA LIÊN QUAN

w