Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A m < 3
2. B −4 < m < 1. C 1 < m , 4 D ∀m ∈ R
Câu 2 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 3 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = √3 B |→−u |= 9 C |→−u |= 3
D |→−u |= 1
Câu 4 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
4 + ln 2
2 . B F(
π
4)= π
4 −
ln 2
2 . C F(
π
4)= π
3 −
ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 5 Tính I =R1
0
3
√ 7x+ 1dx
A I = 45
8 .
Câu 6 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (−2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (2; −1; 2).
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m ≥ e−2 B m > e2 C m > 2e D m > 2.
Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2= 40 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 10
C (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
Câu 10 Cho hàm số f (x)=
− 1
3x
2(2m+ 3)x2− (m2+ 3m)x + 2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 11 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 12 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
A. 2a
3
3
3
Câu 13 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Trang 2Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?
A (3, 3; 3, 5)· B (3, 5; 3, 7)· C (3, 1; 3, 3)· D (3, 7; 3, 9)·.
Câu 15 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 16 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 17 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 18 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= 1
Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 20 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 4√5 B |w|= √85 C |w|= √48 D |w|= 6√3
Câu 21 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −11
29
11
29
13.
Câu 22 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 23 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 24 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 25 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B Không có số nào C C.Truehỉ có số 0 D 0 và 1.
Câu 26 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4).
Câu 28 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
A ab= 5
Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
Trang 3Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 3 B (x+ 2)2+ y2+ z2 = 9
C (x − 2)2+ y2+ z2 = 3 D (x − 2)2+ y2+ z2 = 9
Câu 31 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A. 1
2ln
2x+ lnx + C B ln2x+ lnx + C C x+ 1
2ln
Câu 32 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng
(−2; 3) Tính I = R−12[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4
Câu 33 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A Q(1; 2; −5) B M(−2; 1; −8) C N(4; 2; 1) D P(3; 1; 3).
Câu 34 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 3
2 < |z| < 3 C. 5
2 < |z| < 4 D. 1
2 < |z| < 2
Câu 35 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 36 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
√ 2
1
√
2.
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 2
√ 5
5 .
Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 5
2 < |z| < 7
1
2 < |z| < 3
2. D 2 < |z| <
5
2.
Câu 40 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
Trang 4Câu 42 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay
⇔ x< y B Nếu a > 0 thì ax = ay
⇔ x= y
C Nếu a < 1 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 45 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4.
B y′ = x
(x2− 1)log4e. C y
(x2− 1) ln 4. D y
2(x2− 1) ln 4.
Câu 46 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 2 hoặc m < −1 B m > 1 hoặc m < −1
3 C m < −2. D m > 1.
Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
30
a√15
3a√6
3a√6
Câu 48 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(2
3;
7
3;
21
5
3;
11
3 ;
17
7
3;
10
3 ;
31
4
3;
10
3 ;
16
3 ).
Câu 50 Cho bất phương trình 3
√ 2(x−1) +1− 3x
≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ [ 1; 3].
B Bất phương trình đúng với mọi x ∈ (4;+∞)
C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D Bất phương trình vô nghiệm.
Trang 5HẾT