1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (547)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 121,67 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ c[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 2 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 1 B |→−u |= 9 C |→−u |= 3

D |→−u |= √3

Câu 3 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M

(−2; −3; −1) C M

(−2; 3; 1)

Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0).

Câu 5 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ≥ 0 B m ∈ (−1; 2) C −1 < m < 7

2. D m ∈ (0; 2).

Câu 6 Tính I =R1

0

3

√ 7x+ 1dx

A I = 20

28.

Câu 7 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 8 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A logax> logay B log 1

a

x> log1

a

y C log x > log y D ln x > ln y.

Câu 9 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 10 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 11 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

3.

Câu 12 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [22;+∞) B [7

4; 2]S[22;+∞) C (7

4;+∞)

D (7

4; 2]S[22;+∞)

Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Trang 2

Câu 14 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y= x3+ x2+ mx − 1nằm bên phải trục tung

A Không tồn tại m B 0 < m < 1

1

3.

Câu 15 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx = F(2x − 1) + C B. R f(2x − 1)dx= 2F(2x − 1) + C

2F(2x − 1)+ C

Câu 16 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√3.a2

2π√2.a2

π√2.a2

√ 3.a2

Câu 17 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

√ 3

Câu 18 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A 2πRl B π√l2− R2 C 2π√l2− R2 D πRl.

Câu 19 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số nghịch biến trên (0;+∞)

C Hàm số nghịch biến trên R D Hàm số đồng biến trên R.

Câu 20 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành

Câu 21 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A −1 < m < 7

Câu 22 Kết quả nào đúng?

A.R sin2xcos x= −sin3x

C.R sin2xcos x= sin3x

Câu 23 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

y= −1

2. C minR

y= 1

y= −1

Câu 24 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 25 Tính I =R1

0

3

√ 7x+ 1dx

A I = 45

8 .

Câu 26 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a

2√3

b

c ) bằng

1

3.

Trang 3

Câu 27 Xác định tập tất cả các giá trị của tham số m để phương trình

2x3+ 3

2x

2− 3x − 1

2 =

m

2 − 1

có 4 nghiệm phân biệt

A S = (−2; −3

4) ∪ (

19

4) ∪ (

19

4 ; 6).

C S = (−2; −3

4) ∪ (

19

Câu 28 Họ nguyên hàm của hàm số y= (x − 1)ex là:

A xex+ C B (x − 1)ex+ C C xex−1+ C D (x − 2)ex+ C

Câu 29 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A loga(xy)= logax.logay B logaxcó nghĩa với ∀x ∈ R

C logaxn = log

a

1 n

x, (x > 0, n , 0) D loga1= a và logaa= 0

Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

3√

3√ 3

Câu 31 Tập nghiệm của bất phương trình log4(3x

− 1).log 1

4

3x− 1

3

4 là:

Câu 32 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là

A. 2

3x

3+ x4

3x

3+ x4

3− x4+ 2x

Câu 33 Cho hình chóp S ABCcó S A vuông góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d

BAC= 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC

A V = 5

3 B V = 5

√ 5

√ 5πa3

6πa3

Câu 34 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 35 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

A D= (1; +∞)

B D= (−∞; 0)

C D= (−∞; −1] ∪ (1; +∞)

Câu 36 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R e2xdx=e2x

Câu 37 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 29

27

23

25

4 .

Câu 38 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −3 ≤ m ≤ 0 B m < 0 C m > −2 D −4 ≤ m ≤ −1.

Trang 4

Câu 39 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 5

1

√ 15

5 .

Câu 40 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 41 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 42 Biết

π 2 R 0 sin 2xdx= ea Khi đó giá trị a là:

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (3; 14; 16)

Câu 44 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − 3 sin 3x)5x +cos3xln 5. B y′ = 5x +cos3xln 5.

C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5.

Câu 45 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 46 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 125π

3

500π√3

250π√3

400π√3

Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

C.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R 2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(7

3;

10

3 ;

31

2

3;

7

3;

21

4

3;

10

3 ;

16

5

3;

11

3 ;

17

3 ).

Câu 49 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2abc B P = 2a +2b+3c. C P= 2a +b+c. D P= 26abc

Câu 50 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:25