1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (547)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,14 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; 21; 21) B C(6; −17; 21) C C(8;21

Câu 2 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 3 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếux= 1 thì y = −3

C Nếux > 2 thìy < −15 D Nếu 0 < x < 1 thì y < −3.

Câu 4 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A bc > 0 B ab < 0 C ad > 0 D ac < 0.

Câu 5 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A πRl B 2π√l2− R2 C π√l2− R2 D 2πRl.

Câu 6 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

R

y= −1

2. D minR

y= 1

2.

Câu 7 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 8 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 10 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông

với cạnh huyền bằng 2a Tính thể tích của khối nón

A.

2.a3

π√2.a3

2π.a3

π.a3

3 .

Câu 11 Biết

5 R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 12 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

4.

Câu 13 Cho hình lăng trụ đứng ABC.A1B1C1có AB = a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi

K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK).

√ 15

a√5

a√5

3 .

Trang 2

Câu 14 Cho a > 0 và a , 1 Giá trị của alog a 3bằng?

Câu 15 Cho hình phẳng (H) giới hạn bởi các đường y= x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 8π

5 .

Câu 16 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2

b)= ln a

ln b.

Câu 17 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

29

29

11

13.

Câu 18 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 21 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 22 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z − z = 2a B |z2|= |z|2 C z · z= a2− b2 D z+ z = 2bi

Câu 23 Số phức z= 1+ i

1 − i

!2016 + 1 − i

1+ i

!2018 bằng

Câu 24 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 1 B |z1+ z2|= √5 C |z1+ z2|= 5 D |z1+ z2|= √13

Câu 25 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 26 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y= 1

3x

3− (m − 2)x2+ (m − 2)x +1

3m

2có hai điểm cực trị nằm về phía bên phải trục tung?

A m < 2 B m > 3 C m > 2 D m > 3 hoặc m < 2 Câu 27 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a

2√3

b

c ) bằng

A. 2

1

3.

Câu 28 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)

A. 3

7

5

9

4.

Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính

đường tròn nội tiếp tam giác ABC bằng

Trang 3

Câu 30 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A logaxn = log

a

1 n

x, (x > 0, n , 0) B loga(xy)= logax.logay

C loga1= a và logaa= 0 D logaxcó nghĩa với ∀x ∈ R

Câu 31 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng

với lãi suất 3

A 48.621.980 đồng B 43.091.358 đồng C 46.538667 đồng D 45.188.656 đồng.

Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).

Độ dài đường cao AH của tứ diện ABCD là:

Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và

mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có

chu vi là:

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z|

Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 4)2 B P=

|z|2− 42 C P =

|z|2− 22 D P = (|z| − 2)2

Câu 35 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

1

√ 2

3 .

Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá

trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 2

√ 85

√ 97

Câu 40 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| < 1

3

1

2 < |z| < 3

2.

Câu 42 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Trang 4

Câu 43 Cho m= log23; n= log52 Tính log22250 theo m, n.

A log22250= 2mn+ n + 3

C log22250= 3mn+ n + 4

Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 45 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 46 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 47 Biết

π 2 R 0 sin 2xdx= ea Khi đó giá trị a là:

Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 49 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRl + 2πR2 B St p = πRh + πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2

Câu 50 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

Trang 5

HẾT

Ngày đăng: 04/04/2023, 14:25

w