Trong không gian , hình chiếu của điểm trên đường thẳng có tọa đồ là Đáp án đúng: D Giải thích chi tiết: Trong không gian , hình chiếu của điểm trên đường thẳng có tọa đồ là Lời giải
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 057.
Câu 1 Trong không gian , hình chiếu của điểm trên đường thẳng có tọa
đồ là
Đáp án đúng: D
Giải thích chi tiết: Trong không gian , hình chiếu của điểm trên đường thẳng
có tọa đồ là
Lời giải
Gọi là hình chiếu của điểm trên đường thẳng
; đường thẳng có véc tơ chỉ phương
Câu 2 Cho số phức Tìm phần thực của số phức
Đáp án đúng: A
Giải thích chi tiết: Cho số phức Tìm phần thực của số phức
A B C D
Lời giải
Câu 3 Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Đáp án đúng: D
Trang 2Giải thích chi tiết: Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Lời giải
Đáp án đúng: D
+ Với
Câu 5 Cho mặt cầu có bán kính Đường kính của mặt cầu đó
Đáp án đúng: A
Tọa độ giao điểm của và là
Đáp án đúng: D
Giải thích chi tiết: Trong không gian , cho đường thẳng và mặt phẳng
Tọa độ giao điểm của và là
Trang 3A B C D
Lời giải
Câu 7 Hàm số nào sau đây có tối đa ba điểm cực trị.
Đáp án đúng: B
Câu 8 inh chóp túr giác đều có tất cả bao nhiêu mặt phắng đối xứng?
Đáp án đúng: D
Câu 9 Thể tích của khối nón có chiều cao bằng 6 bằng
Đáp án đúng: D
Đáp án đúng: A
Câu 11
Cho khối lăng trụ đứng có đáy là tam giác vuông cân tại , (với
), góc giữa đường thẳng và mặt phẳng bằng Thể tích của khối lăng trụ đã cho bằng
Đáp án đúng: A
Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác
Đáp án đúng: D
Trang 4Giải thích chi tiết: Trong không gian với hệ toạ độ , cho tam giác với , ,
Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác
Lời giải
Suy ra vuông tại Vậy tâm đường tròn ngoại tiếp là trung điểm của
Câu 13
Đáp án đúng: B
Câu 14
Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng
Trang 5A B C D
Đáp án đúng: B
Giải thích chi tiết: Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng
Lời giải
Câu 15
Đáp án đúng: C
Câu 16 Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Đáp án đúng: B
Giải thích chi tiết: Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Lời giải
Thể tích khối cầu bán kính r = 2 là
Câu 17 Thể tích của khối cầu có bán kính đáy bằng
Đáp án đúng: B
Câu 18 Cho hàm số , với mọi và có đạo hàm liên tục trên đoạn , thỏa mãn
Đáp án đúng: D
Giải thích chi tiết: Vì với mọi nên giả thiết
Trang 6Vì
Câu 19
Cho hàm số có bảng biến thiên như sau:
Khẳng định nào sau đây sai?
A Hàm số đồng biến trên khoảng
B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số nghịch biến trên khoảng
Đáp án đúng: B
Giải thích chi tiết: Cho hàm số có bảng biến thiên như sau:
Khẳng định nào sau đây sai?
Trang 7A Hàm số đồng biến trên khoảng
B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số nghịch biến trên khoảng
Lời giải
Câu 20 Cho một khối trụ có khoảng cách giữa hai đáy bằng 10, biết diện tích xung quanh của khối trụ bằng
Thể tích của khối trụ là:
Đáp án đúng: C
Giải thích chi tiết: Tìm giá trị lớn nhất của hàm số ?
A B C D .
Câu 21
Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên
Đáp án đúng: B
Giải thích chi tiết: Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên đường thẳng Khoảng cách lớn nhất giữa và bằng
Lời giải
Trang 8Gọi , lần lượt là trung điểm , , khi đó và Chọn
hệ trục toạ độ có gốc tại , chiều dương các tia , trùng với các tia ,
và tia cùng hướng với tia
Suy ra
Dẫn đến
Phương trình trên có nghiệm khi và chỉ khi
Trang 9Từ đó ta được giá trị lớn nhất của là
Đáp án đúng: C
Câu 23 Họ nguyên hàm của hàm số là
Đáp án đúng: C
Câu 24 Biểu thức có giá trị bằng:
Đáp án đúng: B
thể tích khối tứ diện bằng
Đáp án đúng: D
Câu 26
Cho hình nón đỉnh có đáy là đường tròn tâm Thiết diện qua trục hình nón là một tam giác cân với cạnh đáy bằng và có diện tích là Gọi là hai điểm bất kỳ trên đường tròn Thể tích khối chóp đạt giá trị lớn nhất bằng
Đáp án đúng: C
Câu 27 Khối nón có đường kính đáy bằng và góc ở đỉnh bằng Đường sinh của khối nón bằng
Đáp án đúng: C
Giải thích chi tiết: [2H2-1.2-2] Khối nón có đường kính đáy bằng và góc ở đỉnh bằng Đường sinh của khối nón bằng
Trang 10A B C D .
Lời giải
FB tác giả: Mai Hoa
Gọi đường kính đáy của khối nón là , là đỉnh của khối nón Khi đó:
Khi đó: Tam giác vuông cân tại và ,
Đường sinh của khối nón là
Câu 28 Tìm tất cả các họ nguyên hàm của hàm số
Đáp án đúng: B
Giải thích chi tiết:
Câu 29 Cho khối hộp chữ nhật ABCD A ' B ' C ' D ' Hỏi mặt phẳng ( AB' C ' D) chia khối hộp đã cho thành bao nhiêu khối lăng trụ ?
Đáp án đúng: B
Câu 30
Cho hàm số xác định trên , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Trang 11Tìm tập hợp tất cả các giá trị thực của tham số sao cho phương trình có ba nghiệm thực phân biệt.
Đáp án đúng: D
Câu 31
Cho hàm số liên tục trên đoạn và có đồ thị như hình vẽ
Phương trình có bao nhiêu nghiệm thực trên đoạn ?
Đáp án đúng: A
Câu 32 Cho khối lăng trụ có thể tích là , đáy là tam giác vuông cân có độ dài cạnh huyền bằng
Độ dài chiều cao khối lăng trụ bằng
Đáp án đúng: D
Trang 12Câu 33 Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường thẳng
Điểm nào dưới đây thuộc ?
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường
Lời giải
Đường thẳng có một VTCP vectơ chỉ phương là
Giả sử đường thẳng cắt đường thẳng tại
Vì đường thẳng vuông góc với đường thẳng nên
Phương trình đường thẳng đi qua và có vectơ chỉ phương là
Câu 34
Cho tứ diện đều có cạnh bằng Tính bán kính mặt cầu ngoại tiếp tứ diện
Đáp án đúng: B
Câu 35 Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng Gọi S là diện tích xung quanh của hình trụ có
hai đường tròn đáy lần lượt ngoại tiếp các hình vuông ABDC và A'B'C'D' Khi đó S bằng:
Đáp án đúng: D
Câu 36 Đồ thị hàm số có đường tiệm cận ngang là
Đáp án đúng: B
Trang 13Câu 37 Tính tích phân
Đáp án đúng: D
Đáp án đúng: B
Câu 39
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất 3 nghiệm phân biệt thuộc khoảng
Đáp án đúng: B
Giải thích chi tiết: Đặt Ta có
Bảng biến thiên
Trang 14Dựa vào bảng biến thiên ta có Vì m nguyên nên Do đó có
giá trị nguyên của m thỏa mãn đề bài.
Câu 40 Cho lăng trụ đứng có đáy là tam giác vuông tại , , góc bằng Góc giữa đường thẳng và mặt phẳng bằng Bán kính mặt cầu ngoại tiếp tứ diện
bằng
Đáp án đúng: D
Giải thích chi tiết:
Trong tam giác vuông có:
Vì và hình chiếu của lên mặt phẳng là nên góc giữa đường thẳng và mặt phẳng bằng góc giữa hai đường thẳng và , và bằng góc ( vì tam giác vuông tại B
Trong tam giác vuông có:
Trong tam giác vuông có:
ra hai điểm , cùng nhìn dưới một góc vuông
Trang 15Vậy bán kính mặt cầu ngoại tiếp tứ diện bằng .