TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11 Điện thoại 0946798489 Facebook Nguyễn Vương https //www facebook com/phong baovuong Trang 1 fanpage Nguyễn Bảo Vương Website http //www nbv edu vn/ KIỂM TRA HỌC KỲ[.]
Trang 1TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11 Điện thoại: 0946798489
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 1
fanpage: Nguyễn Bảo Vương
Website: http://www.nbv.edu.vn/
KIỂM TRA HỌC KỲ II NĂM HỌC 2021 - 2022
Môn: TOÁN - Lớp 11 - Chương trình chuẩn
1 Trắc nghiệm (35 câu)
lim
1
n n
có giá trị bằng
1
có giá trị bằng
Câu 3 Cho hàm số f x
xác định trên \ 2
bởi
2
x
x
Tính f ' 1
Câu 4 Nếu các dãy số u n , v n thỏa mãn limu và lim n 4 v thì n 3 limu nv n bằng
3
Câu 5 Nếu hàm số f x thỏa mãn
1
x
1
lim3f
x
x bằng
Câu 6 Hàm số nào sau đây liên tục tại điểm x ?2
2
x y
x
4
x y x
3
y x x .
Câu 7 Tính giới hạn sau:
3 2
lim
x
Câu 8 Cho f x là hàm số liên tục tại x0 Đạo hàm của hàm số f x tại x0 là
A 0 0
0
lim
h
f x h f x
h
(nếu tồn tại giới hạn)
B f x 0 h f x 0
h
C f x 0
0
lim
h x
f x h f x
h
(nếu tồn tại giới hạn)
Câu 9 Số gia của hàm số y2x23x1ứng với số gia x tại điểm x0 là
A x 4 2 x 3x0. B x 4 x0 2 x 3
C x 4 x 2x3x0. D x 4 x 3 x 2x0
Câu 10 Hàm số yx n có đạo hàm trên là
A y n x n B y n1 x n C y n 1 x n 1
D y n x n1
Câu 11 Cho hàm số 2
1
x y x
Tính y 3
A 5
3 4
2
4
Trang 2Blog: Nguyễn Bảo Vương: http://www.nbv.edu.vn/
Trang 2 Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/
Câu 12 Đạo hàm của hàm số 3 2
f x x x x là
A 2
f x x x B 2
f x x x
C f x 3x22x 5 D f x 6x22x 5
Câu 13 Đạo hàm của hàm số
1
x x y
x bằng biểu thức có dạng
2
2 1
ax bx
x Khi đó a b bằng:
A a b 2 B a b 1 C a b 3 D a b 4
Câu 14 Đạo hàm cấp một của hàm số y(1x3 5) là:
A y' 5(1 x3 4) B y' 3(1x3 4) C y' 15 (1x2 x3 4) D y' 5(1x3 4)
Câu 15 Cho hàm số y 4x2 1 Tập nghiệm của bất phương trình y là' 0
A B ;0 C 0; D ;0
Câu 16 Tính đạo hàm của hàm số 2 2
1
y x
y x B 2 2
y x x C 2
y x x D 2
y x x
Câu 17 Cho hai hàm số f x( )3x2 và g x( )5(3x x 2) Tập nghiệm của bất phương trình f x( )g x( )
là
A ;15
16
15
16
15
16
15
16
Câu 18 Trong các mệnh đề sau, mệnh đề sai là:
A sinx cosx B n n 1
x nx với n , n 1
C 1 12
x
với x 0
Câu 19 Tính đạo hàm của hàm số ysin cos 2x x
A cos cos 2x x2 sin 2 sinx x B cos cos 2x xsin 2 sinx x
C cos cos 2x x2 sin 2 sinx x D cos cos 2x x2 sin 2x
Câu 20 Cho hàm số ysinu Tính y'.
A y'u'.sinu B y'cosu C y'u'.cosu D y' u'.cosu
Câu 21 Tính đạo hàm của hàm số ycosx2021
A y sinx B y sinx C y sinx2021. D y sinx2021
Câu 22 Tính đạo hàm của hàm số ytanxsinx1
cos cos
x
cos cos
x
cos cos
x
cos cos
x
Câu 23 Tính đạo hàm của hàm số ycotxtanx2 sinx1
cos sin
2cos cos sin
2 cos cos sin
2 cos cos sin
Trang 3Điện thoại: 0946798489 TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 3
Câu 24 Cho hàm số y 1 3 xx2 Khẳng định nào dưới đây đúng?
A y 2y y 1 B y 22 y y1
C y y y 2 1 D y 2y y 1
Câu 25 Đạo hàm cấp hai của hàm số 4 3
A 4x39x2 B 12x218x C x33x2 D x23x
Câu 26 Cho đường thẳng DE song song với mặt phẳng ABC Mệnh đề nào dưới đây là mệnhđề đúng?
A AD AB AC; ;
đồng phẳng B DE AB AC ; ;
đồng phẳng
C AE AB AC; ;
đồng phẳng D DE DB DC ; ;
đồng phẳng
Câu 27 Cho hình chóp S ABCD có đáy là hình thoi tâm O và SASC , SBSD Các điểm M N lần ,
lượt là trung điểm ADvà CD Trong các mệnh đề sau mệnh đề nào sai?
A MN SD B BDMN C BDSA D MN SA
Câu 28 Trong các mệnh đề sau mệnh đề nào đúng?
A Nếu đường thẳng b song song với đường thẳng c thì góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c
B Góc giữa hai đường thẳng là góc nhọn
C Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b song song với
c
D Góc giữa hai đường thẳng bằng góc giữa hai véctơ chỉ phương của hai đường thẳng đó
Câu 29 Cho hình chóp S ABCD có đáy ABCD là hình vuông và SAABCD Gọi M N lần lượt là ,
trung điểm CD và BC Trong các mệnh đề sau mệnh đề nào đúng.
A BC(SAD) B AD(SCD) C MN(SBD) D MN (SAC)
Câu 30 Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A , cạnh bên SA vuông góc với
đáy Gọi D là trung điểm của BC Trong các mặt phẳng SAB , SAC , SBC , ABC và
SAD , có bao nhiêu cặp mặt phẳng vuông góc với nhau.
Câu 31 Cho hình chóp tứ giác đều S ABCD với O là tâm của đa giác đáy Biết cạnh bên bằng 2a và
3
SO a Tính góc giữa cạnh bên và mặt đáy
Câu 32 Cho hình chóp S ABCD có đáy ABCD là hình thoi, SAABCD Khẳng định nào sau đây
đúng?
A SBC SAB B SCD SAD C SAC SBD D SBC SCD
Câu 33 Cho hình lập phươngABCD A B C D Khẳng định nào sau đây không đúng?
A ABCD AA C C B AA C C BB D D
C AA B B BB C C D AA B B BB D D
Trang 4Blog: Nguyễn Bảo Vương: http://www.nbv.edu.vn/
Trang 4 Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/
Câu 34 Cho hình chóp S ABC có SAABC, SA a 3 và ABC vuông tại B có cạnh BCa,
5
ACa Tính theo a khoảng cách từ A đến SBC
A 2 21
7
a
7
a
3
a
Câu 35 Cho hình lăng trụ đều ABC A B C AB ' ' ', a A A, ' a Tính khoảng cách giữa hai đường
thẳngA A' và BC ?
A 3
2
a
4
a
6
a
2 Tự luận (4 câu)
Câu 1 Cho hàm số 2
x
x
, viết phương trình tiếp tuyến của đồ thị hàm số C , biết tiếp tuyến cắt
trục hoành và trục tung lần lượt tại A và B sao cho tam giác OAB cân tại O với O là gốc tọa độ.
lim n n 2 n 1
Câu 3 Cho hàm số
2 sin ,
2 sin ,
cos 2,
2
a x x
Biết rằng hàm số liên tục trên Tìm a b,
Câu 4 Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, cạnh bên SA2a.Hình
chiếu vuông góc với đỉnh S trên mặt phẳng ABCD là trung điểm H của đoạn AO Tính khoảng cách giữa hai đường thẳng SD và AB
BẢNG ĐÁP ÁN
16C 17A 18D 19C 20C 21B 22A 23A 24A 25B 26B 27D 28A 29D 30B 31D 32C 33D 34A 35A
1 Trắc nghiệm (35 câu)
Câu 1 2 3
lim
1
n
n
có giá trị bằng
Lời giải Chọn B
Ta có
3 2
1
n
n
1
có giá trị bằng
Trang 5Điện thoại: 0946798489 TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 5
Lời giải Chọn C
1
Câu 3 Cho hàm số f x
xác định trên \ 2
bởi
2
x
x
Tính f ' 1
Lời giải Chọn D
2
f x
Suy ra
1
x f x f
Do đó, hàm số không liên tục tại điểm x 1
Vậy hàm số đã cho không tồn tại đạo hàm tại x 1
Câu 4 Nếu các dãy số u n , v n thỏa mãn limu và lim n 4 v thì n 3 limu nv n bằng
3
Lời giải Chọn B
Ta có limu nv nlimu nlimv n7
Câu 5 Nếu hàm số f x thỏa mãn
1
x
1
lim3f
x
x bằng
Lời giải Chọn C
Câu 6 Hàm số nào sau đây liên tục tại điểm x ?2
2
x y
x
4
x y x
3
y x x .
Lời giải Chọn D
Ta có:
2
x y x
có TXĐ D1R\ 2 + Hàm số y x có TXĐ 3 D2 3;
+ Hàm số 22 1
4
x y x
có TXĐ D3R\ 2 + Hàm số y3x32x có TXĐ 1 D4 R
Do 2D1;2D2;2D3 nên 3 hàm số 1
2
x y x
; y x ;3 22 1
4
x y x
không liên tục tại 2
x
Hàm số y f x 3x32x1thỏa mãn lim2 2
x f x f
nên hàm số liên tục tại x 2
Câu 7 Tính giới hạn sau:
3 2
lim
x
Trang 6Blog: Nguyễn Bảo Vương: http://www.nbv.edu.vn/
Trang 6 Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/
Lời giải Chọn D
3
2
2
2 2
1
x
x
x
x x
x x
2
1
1
x x
Câu 8 Cho f x là hàm số liên tục tại x0 Đạo hàm của hàm số f x tại x0 là
0
lim
h
f x h f x
h
(nếu tồn tại giới hạn)
B. f x 0 h f x 0
h
C. f x 0
0
lim
h x
f x h f x
h
(nếu tồn tại giới hạn)
Lời giải Chọn A
Câu 9 Số gia của hàm số y2x23x1ứng với số gia x tại điểm x0 là
A.x 4 2 x 3x0 B.x 4 x0 2 x 3
C x 4 x 2x3x0. D x 4 x 3 x 2x0
Lời giải Chọn B
Ta có
2
2
o o
Câu 10 Hàm số yx n có đạo hàm trên là
A y n x n B y n1 x n C 1
1 n
y n x D y n x n1
Lời giải Chọn D
Câu 11 Cho hàm số 2
1
x y x
Tính y 3
A 5
3 4
2
4
Lời giải Chọn B
Cách 1: Ta có
2
x
2
3
4
3 1
Cách 2: Sử dụng máy tính bỏ túi:
Trang 7Điện thoại: 0946798489 TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 7
Câu 12 Đạo hàm của hàm số f x 2x3x25x là1
A 2
f x x x B 2
f x x x
C. 2
f x x x D. 2
f x x x
Lời giải Chọn D
Câu 13 Đạo hàm của hàm số
2 1 1
x x y
x bằng biểu thức có dạng
2
2 1
ax bx
x Khi đó a b bằng:
A a b 2 B a b 1 C a b 3 D a b 4
Lời giải
Chọn A
2
Câu 14 Đạo hàm cấp một của hàm số y(1x3 5) là:
A y'5(1x3 4) B y' 3(1x3 4) C y' 15 (1x2 x3 4) D y' 5(1x3 4)
Lời giải Chọn C
Ta có y'5(1x3 4) (1x3) ' 15 (1x2 x3 4)
Câu 15 Cho hàm số y 4x21 Tập nghiệm của bất phương trình 'y là0
Lời giải Chọn D
Tập xác định D
2
4
x
x
Câu 16 Tính đạo hàm của hàm số 2 2
1
y x
y x x C. 2
y x x D. 2
y x x
Lời giải Chọn C
y x x x x x x x
Câu 17 Cho hai hàm số f x( )3x2 và g x( )5(3x x 2) Tập nghiệm của bất phương trình f x( )g x( )
là
A ;15
16
B 15; 16
C ; 15
16
D 15; 16
Lời giải Chọn A
( ) 6
f x x
( ) 5(3 2 ) 15 10
g x x x
Trang 8Blog: Nguyễn Bảo Vương: http://www.nbv.edu.vn/
Trang 8 Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/
15
16
f x g x x x x x
; 16
S
Câu 18 Trong các mệnh đề sau, mệnh đề sai là:
A sinx cosx B xn nxn 1
với n , n 1
x
với x 0
Lời giải Chọn D
Với x 0, x 21
x
Câu 19 Tính đạo hàm của hàm số ysin cos 2x x
A cos cos 2x x2 sin 2 sinx x B cos cos 2x xsin 2 sinx x
C cos cos 2x x2 sin 2 sinx x D cos cos 2x x2 sin 2x
Lời giải Chọn C
Áp dụng u v /u v uv' '
sin /.cos 2 cos 2 /.sin cos cos 2 sin 2 2 /.sin
cos cos 2 2 sin 2 sin
Câu 20 Cho hàm số ysinu Tính y'.
A y'u'.sinu B y'cosu C y'u'.cosu D y' u'.cosu
Lời giải Chọn C
Câu 21 Tính đạo hàm của hàm số ycosx2021
A y sinx B y sinx C y sinx2021. D y sinx2021
Lời giải Chọn B
Ta có: ycosx2021 y sinx
Câu 22 Tính đạo hàm của hàm số ytanxsinx1
cos cos
x
cos cos
x
cos cos
x
cos cos
x
Lời giải Chọn A
cos
x
Câu 23 Tính đạo hàm của hàm số ycotxtanx2 sinx1
cos sin
2cos cos sin
Trang 9Điện thoại: 0946798489 TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 9
2 cos cos sin
2 cos cos sin
Lời giải Chọn A
Câu 24 Cho hàm số y 1 3 xx2 Khẳng định nào dưới đây đúng?
A y 2y y 1 B y 22 y y1
C y y y 2 1 D y 2y y 1
Lời giải
Chọn A
2
1 3
y xx y2 1 3x x 2
2 y y 3 2x
2. y 22 y y 2 y 2y y 1
Câu 25 Đạo hàm cấp hai của hàm số 4 3
A 4x39x2 B 12x218x C x33x2 D x23x
Lời giải Chọn B
Ta có:y'4x39x 2
" 12 18
Câu 26 Cho đường thẳng DE song song với mặt phẳng ABC Mệnh đề nào dưới đây là mệnhđề đúng?
A AD AB AC; ;
đồng phẳng B.DE AB AC ; ;
đồng phẳng
C AE AB AC; ;
đồng phẳng D DE DB DC ; ;
đồng phẳng
Lời giải Chọn B
Ba vectơ đồng phẳng khi và chỉ khi ba vectơ đó có giá song song hoặc nằm trong một mặt phẳng Câu 27 Cho hình chóp S ABCD có đáy là hình thoi tâm O và SASC , SBSD Các điểm M N lần ,
lượt là trung điểm AD và CD Trong các mệnh đề sau mệnh đề nào sai?
A MN SD B BDMN C BDSA D.MNSA
Lời giải
Chọn D
Trang 10Blog: Nguyễn Bảo Vương: http://www.nbv.edu.vn/
Trang 10 Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/
Xét phương án A: Do AC BD
AC SO
2
SDSO BD
nên ACSD, mà MN/ /AC(tính chất
đường trung bình) suy ra MN SD Loại phương án A
Tương tự ta chứng minh được BDMN và BDSA nên loại các phương án , B C
Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao
Do đó SO AC , suy ra tam giác SOA vuông tại O nên AC và SA không thể vuông tại A
Mà theo tính chất đường trung bình ta có MN/ /AC Vậy MN không vuông góc với SA
Vậy chọn đáp ánD
Câu 28 Trong các mệnh đề sau mệnh đề nào đúng?
A Nếu đường thẳng b song song với đường thẳng c thì góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c
B Góc giữa hai đường thẳng là góc nhọn
C Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b song song với
c
D Góc giữa hai đường thẳng bằng góc giữa hai véctơ chỉ phương của hai đường thẳng đó
Lời giải Chọn A
A Đúng vì theo lý thuyết:góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng c và d cùng đi qua một điểm và lần lượt song song hoặc trùng với a và b
B Sai vì góc giữa hai đường thẳng có thể là góc vuông
C Sai vì góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b có thể song song hoặc trùng với c
D Góc giữa hai đường thẳng bằng góc giữa hai véctơ chỉ phương của hai đường thẳng đó chỉ khi góc giữa hai véctơ chỉ phương của hai đường thẳng đó không là góc tù
Câu 29 Cho hình chóp S ABCD có đáy ABCD là hình vuông và SAABCD Gọi M N lần lượt là ,
trung điểm CD và BC Trong các mệnh đề sau mệnh đề nào đúng.
A BC (SAD) B.AD(SCD) C.MN (SBD) D.MN (SAC)
Lời giải Chọn D
Trang 11Điện thoại: 0946798489 TUYỂN TẬP ĐỀ THI HỌC KỲ 2 – LỚP 11
Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 11
Ta có:BC/ /AD (Vì tứ giác ABCD là hình vuông) nên BC (SAD) sai Suy ra đáp án A sai
Ta giả sử AD(SCD) AD SD ( Vô lí vì trong tam giác không có hai góc vuông) nên
AD SCD sai Suy ra đáp án B sai
Ta có:MN/ /BD (Vì MN là đường trung bình của tam giác BCD ) nên MN (SBD) sai Suy ra
đáp án C sai
Ta có:
BD AC
BD SAC
BD SA
Mà MN/ /BD (Vì MN là đường trung bình của tam giác BCD )(2)
Từ (1) và (2) suy ra, MN (SAC)
Vậy đáp án D đúng
Câu 30 Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A , cạnh bên SA vuông góc với
đáy Gọi D là trung điểm của BC Trong các mặt phẳng SAB , SAC , SBC , ABC và
SAD , có bao nhiêu cặp mặt phẳng vuông góc với nhau.
Lời giải
Chọn B
Vì SAABC nên ta có SAB ABC, SAD ABC và SAC ABC
Vì D là trung điểm của BC và tam giác ABC vuông cân tại A nên ADBC
Ta có SA BC BC SAD SBC SAD
AD BC
Vì AC SA AC SAB SAC SAB
AC AB
Suy ra có 5 cặp mặt phẳng vuông góc với nhau từ các mặt phẳng đã cho
Câu 31 Cho hình chóp tứ giác đều S ABCD với O là tâm của đa giác đáy Biết cạnh bên bằng 2a và
3
SO a Tính góc giữa cạnh bên và mặt đáy
Lời giải Chọn D