1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Dai so va Giai tich 11 De khao sat chat luong

9 4 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 609,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trong mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau?. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳ[r]

Trang 1

ĐỀ ÔN TÂP SỐ 1 HỌC KÌ II LỚP 11

Câu 1 Tìm

2 2

lim

1 2

n

A 2 B 1 C 1 D 

Câu 2 Tính 1

1 lim

2

x

x x

: A 1 B -2 C

1 2

D

3 2

Câu 3 Tìm lim 3.2 n 3n 4

A 1 B  C 0 D   Câu 4 3

1

lim

3

x

x x

A   B  C 1 D

2 3

Câu 5 Cho các hàm số

1

x

x

A 1 B 2 C 3 D 0

Câu 6 Cho hàm số:

( )

0

f x



a/ Hàm số f x 

liên tục tại x 2; b/ Hàm số f x 

liên tục tại x 0; c/ Hàm số f x 

liên tục tại x 1

Có mấy mệnh đề đúng A 0 B 1 C 2 D 3

Câu 7 Xét phương trình: 3x32x 2 0 (1) Chọn phát biểu đúng?

Câu 8 Tính tổng

n

S          

A

4

3

B

3

2 C

5

4 D

4 3

Câu 9 Cho dãy số  u n thỏa mãn 2

3 2 5.2

n

u  

suy ra limu  n

A 2 B 2 C   D Kết quả khác

Câu 10 Tìm

lim

x

 

A -4 B 4 C   D 

lim

x

x

 

   A 1 B 0 C 1 D

1 2

Câu 12 Cho

2

n n

u

A 1 2x 2 B

1 22 2

x

C 1 x 2 D 1 4x 2

Câu 13 Cho hàm số y x 1 2 os c xcotx Xét các mệnh đề

a/ Hàm số liên tục trên các khoảng k ; k

b/ Hàm số liên tục trên các khoảng  k k; 

c/ Hàm số liên tục trên các khoảng

;

d/ Hàm số liên tục trên các khoảng k2 ; k2

Số mệnh đề đúng là A 1 B 2 C 3 D 4

Trang 2

Câu 14 Cho dãy số  u n thỏa mãn

1

1

2017 , 1, 2,3,

3

n n

u u

Đặt S nu1u2 u n suy ra limS  n

A

8068

3 B

6051

4 C 0 D 

Câu 15 Hàm số y 2x3 3m1x

liên tục   x  3; 1    m S Chọn phát biểu đúng

A S 9; B. 5;  S

C S 6; D S 1;7  Câu 16 Tính đạo hàm của hàm số

6 9

x y x

A  2

3

9

3 9

x

15 9

15 9

x

Câu 17 Đạo hàm của y = x2− 4 x3 bằng ?

A

/

1

y

B.

2 /

6 4

y

C.

2 /

12

y

D.

2 /

2

y

Câu 18 Tính đạo hàm : y(x21)(x32)

A

yxxx B y/ 5x4 3x22x C y/ 5x4 3x26x D.y/ 5x4 3x24x Câu 19 Đạo hàm của y = 2− 3 x

2 x+ 1 bằng:

(2 x+1)2 B − 4

(2 x+1)2 C 8

(2 x +1)2 D 1

(2 x +1)2

Câu 20 Hệ số góc của tiếp tuyến với đồ thị hàm số y2x3 3x25tại điểm có hoành độ x0 = -2 là:

A 38 B 36 C 12 D -12

Câu 21 Cho hàm số

2 3 3

1 2

y

x

 Số nghiệm của phương trình y  là0

A 1 B 0 C 2 D 3

Câu 22 Gọi d là tiếp tuyến của đồ thị hàm số

1 3

x y x

 tại giao điểm của nó với trục tung d đi qua điểm nào

dưới đây A

5 3;

4

 B

5 3;

3

 C

5 3;

3

 D 3;7 Câu 23 Xét các mệnh đề

a/ Cho ysin2 xy2sinx b/ Cho ysin 52 xy10 os5c x

c/ Cho ysin 3 22  x y2sin 6 4  x

d/ Cho

1

2 4 s inx

Số mệnh đề đúng là A 0 B 1 C 2 D 3

Câu 24 Cho hàm số yx1 x22 y1 x 

A

2

2

  B

2 2

  C

2 2

  D

2 2

Câu 25 Cho y c os 1 22  x  y1 x 

A sin 6 4x  

B 2sin 6 4x  

C 2sin 6 4x  

D 2sin 6 8x  

Câu 26 Cho chuyển động được xác định bởi phương trình S 2t33t25t, trong đó t được tính bằng giây

và S được tính bằng mét Vận tốc của chuyển động khi t2s là:

Trang 3

A 36 / m s B 41 / m s C 24 / m s D 20 / m s

Câu 27 Cho yx22x 4 x2 2x Số nghiệm của pt: 4 y  là0

A 3 B 0 C 1 D 2

Câu 28 Gọi  C

là đồ thị của hàm số y2 x22

Từ điểm A0;4

kể được bao nhiêu tiếp tuyến với đồ thị

 C

A 0 B 3 C 2 D 1

Câu 29 Số tiếp tuyến của đồ thị hàm số

2

y x

 

 đi qua điểm M2;3là

A 0 B 1 C 2 D 3

Câu 30 Cho y mx 3 2m1x2m 2x4m

Gọi S là tập hợp các giá trị của m để y   Chọn 0 R phát biểu đúng

A S 0;3 B S 0;3 C 1;0 S

D 2; 1  S

Câu 31 Xét các mệnh đề

a/ M là trung điểm của đoạn AB thì MA MB 

b/ G là trọng tâm của tam giác ABC OA OB OC     3GO

, O là điểm bất kì

c/ u

có giá song song hoặc trùng với đường thẳng d suy ra u

là vecto chỉ phương của d

Số mệnh đề đúng là A 3 B 0 C 1 D 2

Câu 32 Xét các mệnh đề

a/ Gọi M, N lần lượt là trung điểm các đoạn AB và CD, ta có AC DB 2MN

b/ Cho hình hộp ABCD.A’B’C’D’ Ta có AB AD AA  AC

AB CD

AB CD

 

Số mệnh đề đúng là A 1 B 2 C 3 D 0

Câu 33 Xét các mệnh đề

a/ Góc giữu hai vecto bất kì khác vecto không luôn thuộc đoạn

0 0

0 ;180

b/ Góc giữa hai đường thẳng trong không gian bằng góc giữa hai vecto chỉ phương của chúng

c/ Cho hai đường thẳng song song a và b c là đường thẳng bất kì, ta có c a,   c b, 

Số mệnh đề đúng là A 1 B 2 C 3 D 0

Câu 34 Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó a P

Mệnh đề nào sau đây là sai?

A Nếu b a thì b / / P  B Nếu b / / P  thì b a

C Nếu b P

Câu 35 Cho hình chóp SABCD có ABCD là hình thoi tâm O và SA = SC, SB = SD Trong các mệnh đề sau,

mệnh đề nào sai ?

Câu 36 Hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông Tất cả các cạnh bên và cạnh đáy của

hình chóp đều bằng a Tích vô hướng SA SC  

là :

A.

2

2

a

2 3 2

a

D 0 Câu 37 Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau Trong các mệnh sau, mệnh đề nào

sai ?

A ACB D ' ' B AA'BD C AB'CD' D ACBD

Câu 38 Qua một điểm O cho trước có bao nhiêu mặt phẳng vuông góc với đường thẳng ( ) cho trước?

Câu 39 Trong các mệnh đề sau, mệnh đề nào có thể sai ?

Trang 4

A Trong không gian, hai đường thẳng vuông góc với nhau thì có thể cắt nhau hoặc chéo nhau

B Trong mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba

thì song song với nhau

C Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

D Trong không gian cho hai đường thẳng song song Đường thẳng nào vuông góc với đường thẳng này thì

vuông góc với đường thẳng kia

Câu 40 Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a Biết SA = a, SA  BC Góc giữa hai

đường thẳng SD và BC là :

Câu 41 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy H,K

lần lượt là hình chiếu của A lên SC, SD KN//CD, N thuộc SC Góc giữa 2 mặt phẳng (SCD) và (SAD) là:

A góc AKN B góc AKH C góc ADC D góc ASC

Câu 42 Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông Khẳng định nào sau đây đúng ?

A 'A C ( 'B BD B ') A C( ' ' )B C D C AC ( 'B BD D ') AC( 'B CD')

Câu 43 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Tính góc giữa hai mặt phẳng ABC) và (SBC)

A

4

arctan

3

 B 90 C 0 0

60 D

2 arctan

3

Câu 44 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Tính

 , 

d A SBC

A

21 6

a

B

21 7

a

C

19 7

a

D

18 6

a

Câu 45 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD Tính diện tích tam giác

SCD A

2 3 2

a

B

2 2 2

a

C

2 2 3

a

D a2 2

Câu 46 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD Tính khoảng cách từ D

đến (SBC) A

3 2

a

B 2

a

C a D

2 2

a

Câu 47 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD Tính góc giữa hai mặt phẳng (SCD) và (SAB)

A 60 B 0 arctan 2  C 45 D 0

1 arc os

3

c   

 

Câu 48 Cho hình chóp đều S.ABC có AB a Góc giã SA và (ABC) bằng 60 Tính 0 d AB SC  , 

A

3

4

a

B

3 2

a

C

3 4

a

D 2

a

Câu 49 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Gọi I là trung điểm BC Tính d SI AC  , 

A 6

a

B

2 19

a

C

3 19

a

D

3 17

a

Câu 50 Cho hình chóp S.ABC có SAABC , SAB  SBC

; SA AB a  ; SC a 3 Tính góc giữa

SB và (SAC)

A 60 B 0 0

30 C 0

45 D arctan 2 

Trang 5

-Hết -GIÁO VIÊN ĐỀ ÔN TÂP SỐ 1 HỌC KÌ II LỚP 11

Câu 1 Tìm

2 2

lim

1 2

n

A 2 B 1 C 1 D 

Câu 2 Tính 1

1 lim

2

x

x x

: A 1 B -2 C

1 2

D

3 2

Câu 3 Tìm lim 3.2 n 3n 4

A 1 B  C 0 D   Câu 4 3

1

lim

3

x

x x

A   B  C 1 D

2 3

Câu 5 Cho các hàm số

1

x

x

A 1 B 2 C 3 D 0

Câu 6 Cho hàm số:

( )

0

f x



a/ Hàm số f x 

liên tục tại x 2; b/ Hàm số f x 

liên tục tại x 0; c/ Hàm số f x 

liên tục tại x 1

Có mấy mệnh đề đúng A 0 B 1 C 2 D 3

Câu 7 Xét phương trình: 3x32x 2 0 (1) Chọn phát biểu đúng?

Câu 8 Tính tổng

n

S          

A

4

3

B

3

2 C

5

4 D

4 3

Câu 9 Cho dãy số  u n

3 2 5.2

n

u  

suy ra limu  n

A 2 B 2 C   D Kết quả khác

Câu 10 Tìm

lim

x

 

A -4 B 4 C   D 

lim

x

x

 

   A 1 B 0 C 1 D

1 2

Trang 6

Câu 12 Cho

2

n n

u

A 1 2x 2 B

1 22 2

x

C 1 x 2 D 1 4x 2

Câu 13 Cho hàm số y x 1 2 os c xcotx Xét các mệnh đề

a/ Hàm số liên tục trên các khoảng k ; k

b/ Hàm số liên tục trên các khoảng  k k; 

c/ Hàm số liên tục trên các khoảng

;

d/ Hàm số liên tục trên các khoảng k2 ; k2

Số mệnh đề đúng là A 1 B 2 C 3 D 4

Câu 14 Cho dãy số  u n

thỏa mãn

1

1

2017 , 1, 2,3,

3

n n

u u

Đặt S nu1u2 u n suy ra limS  n

A

8068

3 B

6051

4 C 0 D 

Câu 15 Hàm số y 2x3 3m1x

liên tục   x  3; 1    m S Chọn phát biểu đúng

A S 9; B. 5;  S

C S 6; D S 1;7  Câu 16 Tính đạo hàm của hàm số

6 9

x y x

A  2

3

9

3 9

x

C  2

15 9

15 9

x

Câu 17 Đạo hàm của y = x2− 4 x3 bằng ?

A

/

1

y

B.

2 /

6 4

y

C.

2 /

12

y

D.

2 /

2

y

Câu 18 Tính đạo hàm : y(x21)(x32)

A

yxxx B y/ 5x4 3x22x C y/ 5x4 3x26x D.y/ 5x4 3x24x Câu 19 Đạo hàm của y = 2− 3 x 2 x+ 1 bằng:

(2 x+1)2 B − 4

(2 x+1)2 C 8

(2 x +1)2 D 1

(2 x +1)2

Câu 20 Hệ số góc của tiếp tuyến với đồ thị hàm số y2x3 3x25tại điểm có hoành độ x0 = -2 là:

A 38 B 36 C 12 D -12

Câu 21 Cho hàm số

2 3 3

1 2

y

x

 Số nghiệm của phương trình y  là0

A 1 B 0 C 2 D 3

Câu 22 Gọi d là tiếp tuyến của đồ thị hàm số

1 3

x y x

 tại giao điểm của nó với trục tung d đi qua điểm nào

dưới đây A

5 3;

4

 B

5 3;

3

 C

5 3;

3

 D 3;7 Câu 23 Xét các mệnh đề

Trang 7

a/ Cho ysin2 xy2sinx b/ Cho ysin 52 xy10 os5c x

c/ Cho ysin 3 22  x y2sin 6 4  x

d/ Cho

1

2 4 s inx

Số mệnh đề đúng là A 0 B 1 C 2 D 3

Câu 24 Cho hàm số yx1 x22 y1 x 

A

2

2

  B

2 2

  C

2 2

  D

2 2

Câu 25 Cho y c os 1 22  x  y1 x 

A sin 6 4x  

B 2sin 6 4x  

C 2sin 6 4x  

D 2sin 6 8x  

Câu 26 Cho chuyển động được xác định bởi phương trình S 2t33t25t, trong đó t được tính bằng giây

và S được tính bằng mét Vận tốc của chuyển động khi t2s là:

Câu 27 Cho yx22x 4 x2 2x Số nghiệm của pt: 4 y  là0

A 3 B 0 C 1 D 2

Câu 28 Gọi  C

là đồ thị của hàm số y2 x22

Từ điểm A0;4

kể được bao nhiêu tiếp tuyến với đồ thị

 C

A 0 B 3 C 2 D 1

Câu 29 Số tiếp tuyến của đồ thị hàm số

2

y x

 

 đi qua điểm M2;3

A 0 B 1 C 2 D 3

Câu 30 Cho y mx 3 2m1x2m 2x4m

Gọi S là tập hợp các giá trị của m để y   Chọn 0 R phát biểu đúng

A S 0;3 B S 0;3 C 1;0 S

D 2; 1  S

Câu 31 Xét các mệnh đề

a/ M là trung điểm của đoạn AB thì MA MB 

b/ G là trọng tâm của tam giác ABC OA OB OC     3GO

, O là điểm bất kì

c/ u

có giá song song hoặc trùng với đường thẳng d suy ra u

là vecto chỉ phương của d

Số mệnh đề đúng là A 3 B 0 C 1 D 2

Câu 32 Xét các mệnh đề

a/ Gọi M, N lần lượt là trung điểm các đoạn AB và CD, ta có AC DB 2MN

b/ Cho hình hộp ABCD.A’B’C’D’ Ta có AB AD AA  AC

AB CD

AB CD

 

Số mệnh đề đúng là A 1 B 2 C 3 D 0

Câu 33 Xét các mệnh đề

a/ Góc giữu hai vecto bất kì khác vecto không luôn thuộc đoạn

0 0

0 ;180

b/ Góc giữa hai đường thẳng trong không gian bằng góc giữa hai vecto chỉ phương của chúng

c/ Cho hai đường thẳng song song a và b c là đường thẳng bất kì, ta có c a,   c b, 

Số mệnh đề đúng là A 1 B 2 C 3 D 0

Câu 34 Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó a P

Mệnh đề nào sau đây là sai?

A Nếu b thì a b / / P  B Nếu b / / P  thì ba

C Nếu b P

Trang 8

Câu 35 Cho hình chóp SABCD có ABCD là hình thoi tâm O và SA = SC, SB = SD Trong các mệnh đề sau,

mệnh đề nào sai ?

Câu 36 Hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông Tất cả các cạnh bên và cạnh đáy của

hình chóp đều bằng a Tích vô hướng SA SC  

là :

A.

2

2

a

2 3 2

a

D 0 Câu 37 Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau Trong các mệnh sau, mệnh đề nào

sai ?

A ACB D ' ' B AA'BD C AB'CD' D ACBD

Câu 38 Qua một điểm O cho trước có bao nhiêu mặt phẳng vuông góc với đường thẳng ( ) cho trước?

Câu 39 Trong các mệnh đề sau, mệnh đề nào có thể sai ?

A Trong không gian, hai đường thẳng vuông góc với nhau thì có thể cắt nhau hoặc chéo nhau

B Trong mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba

thì song song với nhau

C Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

D Trong không gian cho hai đường thẳng song song Đường thẳng nào vuông góc với đường thẳng này thì

vuông góc với đường thẳng kia

Câu 40 Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a Biết SA = a, SA  BC Góc giữa hai

đường thẳng SD và BC là :

Câu 41 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy H,K

lần lượt là hình chiếu của A lên SC, SD KN//CD, N thuộc SC Góc giữa 2 mặt phẳng (SCD) và (SAD) là:

A góc AKN B góc AKH C góc ADC D góc ASC

Câu 42 Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông Khẳng định nào sau đây đúng ?

A 'A C ( 'B BD B ') A C( ' ' )B C D C AC ( 'B BD D ') AC( 'B CD')

Câu 43 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Tính góc giữa hai mặt phẳng ABC) và (SBC)

A

4

arctan

3

 B 90 C 0 0

60 D

2 arctan

3

Câu 44 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Tính

 , 

d A SBC A a 621 B a 721 C a 719 D a 618

Câu 45 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD

Tính diện tích tam giác

SCD A

2 3 2

a

B

2 2 2

a

C

2 2 3

a

D a2 2 Câu 46 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD

Tính khoảng cách từ D

đến (SBC) A

3 2

a

B 2

a

C a D

2 2

a

Câu 47 Cho hình chóp S.ABCD đáy là hình vuông cạnh a SA a và SAABCD

Tính góc giữa hai mặt phẳng (SCD) và (SAB)

A 60 B 0 arctan 2  C 45 D 0

1 arc os

3

c   

 

Câu 48 Cho hình chóp đều S.ABC có AB a Góc giã SA và (ABC) bằng 60 Tính 0 d AB SC  , 

Trang 9

A

3

4

a

B

3 2

a

C

3 4

a

D 2

a

Câu 49 Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA vuông góc với (ABC) SA a Gọi I là trung điểm BC Tính d SI AC  , 

A 6

a

B

2 19

a

C

3 19

a

D

3 17

a

Câu 50 Cho hình chóp S.ABC có SAABC , SAB  SBC

; SA AB a  ; SC a 3 Tính góc giữa

SB và (SAC)

A 60 B 0 0

30 C 0

45 D arctan 2 

Ngày đăng: 28/11/2021, 02:58

🧩 Sản phẩm bạn có thể quan tâm

w