1. Trang chủ
  2. » Giáo án - Bài giảng

Bài 5 Hai hình bằng nhau (NC)

10 493 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hai hình bằng nhau
Trường học Trường Đại Học
Thể loại Bài
Định dạng
Số trang 10
Dung lượng 179,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

HAI HÌNH BẰNG NHAU... HAI HÌNH BẰNG NHAU... HAI HÌNH BẰNG NHAU2... HAI HÌNH BẰNG NHAUD... HAI HÌNH BẰNG NHAUBài tập... HAI HÌNH BẰNG NHAUBài tập... HAI HÌNH BẰNG NHAUBài tập.

Trang 1

Hãy phát biểu định lí phép dời hình? Và kể tên một số phép dời hình mà em đã

biết?

Trang 2

A B

C O

Trang 3

A’

B’

A

B

C

Bài 5 HAI HÌNH BẰNG NHAU

1 Định lí

Nếu ABC và A’B’C’ là hai tam giác bằng nhau thì có phép dời hình biến tam giác ABC thành tam giác A’B’C’.

Chứng minh:

M

M’

Phép biến hình F biến M

thành M’

Nếu

thì

CB q CA p

' ' '

' '

'M p C A q C B

Lấy N bất kì, thì F biến N thành N’

Nếu CN = k CA + h CB

Trang 4

1 Định lí.

Nếu ABC và A’B’C’ là hai tam giác bằng nhau thì có phép dời hình biến tam giác ABC thành tam giác A’B’C’.

Chứng minh:

A

B

C M

C’

A’

B’

M’

CM CN

N

N’

CB q

h CA

p

=

CB CA q

h p k

CB q

h CA

p k

MN MN

) )(

( 2

) (

) (

2 2 2 2

2 2

− +

− +

=

=

Bài 5 HAI HÌNH BẰNG NHAU

Trang 5

1 Định lí.

Nếu ABC và A’B’C’ là hai tam giác bằng nhau thì có phép dời hình biến tam giác ABC thành tam giác A’B’C’.

Chứng minh:

A

B

C M

C’

A’

B’

M’

N

N’

' '

) )(

( 2

' ' ) (

' ' ) (

' ' '

'

2 2

2 2

2 2

CB CA q

h p k

B C q

h A

C p

k

N M N

M

− +

− +

=

=

Bài 5 HAI HÌNH BẰNG NHAU

Trang 6

Bài 05 HAI HÌNH BẰNG NHAU

2 Thế nào là hai hình bằng nhau

Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia.

Vậy hai hình bằng nhau khi nào?

Vậy hai tam giác bằng nhau khi nào?

Nếu hình H1 bằng hình H2 và hình H2 bằng hình H3 thì hình H1 có

bằng hình H3 không? Vì sao?

Trang 7

Bài 05 HAI HÌNH BẰNG NHAU

D

Trang 8

Bài 05 HAI HÌNH BẰNG NHAU

Bài tập.

Phụ lục

Phần 1

Phần 2

Trắc nghiệm

D O

A’

D’

O’

Giả sử hai hcn ABCD tâm O và A’B’C’D’ tâm O’ có

AB=A’B’=CD=C’D’ và AD=A’D’=BC=B’C’

Khi đó tam giác ABC bằng tam giác A’B’C’

Khi đó có phép biến hình F: F(ABC) = A’B’C’

Và biến trung điểm O của AC thành trung điểm O’ của A’C’ Vì O là trung điểm của BD và O’ là trung điểm của B’D’

nên F cũng biến D thành D’

Vậy F biến ABCD thành A’B’C’D’, nên hai hcn đó

bằng nhau

Trang 9

Bài 05 HAI HÌNH BẰNG NHAU

Bài tập.

Phụ lục

Phần 1

Phần 2

Trắc nghiệm Bài 23/23

O 1

O 2

O 3

I1

I2

I3

Tam giác O1O2O3 bằng tam giác

I1I2I3 Nên có phép dời hình F biến O1,

O2,O3 thành I1,I2,I3

Khi đó F cũng biến ba đường tròn (O1,r1), (O2,r2), (O3,r3) lần lượt thành

ba đường tròn (I1,r1), (I2,r2), (I3,r3)

Tức là biến hình H1 thành hình H2

Trang 10

Bài 05 HAI HÌNH BẰNG NHAU

Bài tập.

Phụ lục

Phần 1

Phần 2

Trắc nghiệm

Ngày đăng: 25/09/2013, 20:10

HÌNH ẢNH LIÊN QUAN

Bài 05. HAI HÌNH BẰNG NHAU - Bài 5 Hai hình bằng nhau (NC)
i 05. HAI HÌNH BẰNG NHAU (Trang 6)
Bài 05. HAI HÌNH BẰNG NHAU - Bài 5 Hai hình bằng nhau (NC)
i 05. HAI HÌNH BẰNG NHAU (Trang 8)
Bài 05. HAI HÌNH BẰNG NHAU - Bài 5 Hai hình bằng nhau (NC)
i 05. HAI HÌNH BẰNG NHAU (Trang 9)
Bài 05. HAI HÌNH BẰNG NHAU - Bài 5 Hai hình bằng nhau (NC)
i 05. HAI HÌNH BẰNG NHAU (Trang 10)

TỪ KHÓA LIÊN QUAN

w