1. Trang chủ
  2. » Giáo Dục - Đào Tạo

58 câu lượng giac (gv đặng việt hùng)

11 56 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 453,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Câu 1: (Đặng Việt Hùng-2018) Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số

y sinx cosx mx   đồng biến trên R

A  2 m� � 2 B m� 2 C  2 m  2 D m� 2

Đáp án D

Câu 2: (Đặng Việt Hùng-2018) Phương trình nào dưới đây tương đương với phương trình

cos2x sin 3x 1 2sin x.cos2x ?  

A

1

s inx

2

B s inx 0 C 2sin x sinx2  D 2sin x sinx 02  

Đáp án C

Câu 3: (Đặng Việt Hùng-2018) Phương trình 2cos x cos x 3 02    có nghiệm là

A   2 k

B k2

C

3 k2 ; x arcsin k2

D k

Đáp án B

Câu 4: (Đặng Việt Hùng-2018) Hàm số nào dưới đây là hàm số chẵn?

A y sin 2x sin 4x  B y cos x sin x 2017  4 

C y tan x cot x  D y x cos x x 2  2

Đáp án B

Câu 5: (Đặng Việt Hùng-2018) Hàm số

2sin 1

1 cos

x y

x xác định khi:

  

B 2

  

C x k� 2 D x k�

Đáp án C

Câu 6: (Đặng Việt Hùng-2018) Phương trình sinx m 0vô nghiệm khi m là:

A  � �1 m 1 B

1 1

 

� 

m

Đáp án A

Trang 2

Câu 7: (Đặng Việt Hùng-2018) Phương trình

3 cos

2

x

có nghiệm thỏa mãn0� �x  là:

 

 

C 3

x

D 6

x

Đáp án D

Câu 8: (Đặng Việt Hùng-2018) Điều kiện để phương trình 3sinx m cosx5vô nghiệm là:

A m4 B m 4 C   4 m 4 D

4 4

� �

m m

Đáp án C

Câu 9: (Đặng Việt Hùng-2018) Tập giá trị của hàm sốysin 2x3 là:

A  2;3

B 2;3 C  2; 4

D  0;1

Đáp án C

Câu 10: (Đặng Việt Hùng-2018) Trong các hàm số sau hàm số nào là hàm số chẵn?

A ycot 4x B ycos3x C ytan 5x D ysin 2x

Đáp án B

Câu 11: (Đặng Việt Hùng-2018) Hàm số

2cos sin

4

đạt giá trị lớn nhất là

A 5 2 2 B 5 2 2 C 5 2 2D 5 2 2

Đáp án D

Câu 12: (Đặng Việt Hùng-2018) Tìm tập xác định của hàm số

sinx cos x

A

k

R\ , k Z

2

C R\ k , k Z  �  D R\ k2 , k Z  � 

Đáp án A

Câu 13: (Đặng Việt Hùng-2018) Giải phương trình 3 tan x 3 0 

A x 3 k , k Z

    �

B x 6 k , k Z

   �

C x 6 k , k Z

    �

D x 3 k , k Z

   �

Trang 3

Đáp án A

Câu 14: (Đặng Việt Hùng-2018)Kí hiệu M là giá trị lớn nhất của hàm số y sin2x cos2x.  Tìm M ?

A M 2 2 B M 1C M 2D M 2

Đáp án D

Câu 15: (Đặng Việt Hùng-2018) Tìm nghiệm dương nhỏ nhất thỏa mãn phương trình

sin 2x cos2x s inx cos x 1?   

A x 4

B

5 x 4

C

2 x 3

D x 6

Đáp án A

Câu 16: (Đặng Việt Hùng-2018) Gọi S là tổng các nghiệm của phương trình

s inx

0 cos x 1

 trên đoạn 0; 2017 Tính S.

A S 2035153  B S 1001000  C S 1017072  D S 200200 

Đáp án C

Câu 17: (Đặng Việt Hùng-2018) Khẳng định nào sau đây là khẳng định sai?

A c osx 0 x 2 k2

B cos x 1 �x k2 

C cos x 1�x   k2 D cos x 0 x 2 k

Đáp án A

Câu 18: (Đặng Việt Hùng-2018) Giải phương trình cos2x 5sin x 4 0.  

A x 2 k

  

B x 2 k

   

C x k2  D x 2 k2

  

Đáp án D

Trang 4

Câu 19: (Đặng Việt Hùng-2018) Trên đoạn  ;  phương trình 4sin x 3 0  có tất cả bao nhiêu nghiệm?

Đáp án C

Câu 20: (Đặng Việt Hùng-2018) Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất

của hàm số y  1 2 cos x 2��  3 s inx cos x  ��

trên R. Biểu thức M N 2  có giá trị bằng:

Đáp án C

Câu 21: (Đặng Việt Hùng-2018) Phương trình cos2x4cosx 3 0có nghiệm là:

 

2 arccos 3 2

x k

Đáp án A

Câu 22: (Đặng Việt Hùng-2018) Trong khoảng

0;

2

� � phương trình

sin 4x3sin 4 cos 4x x4cos 4x0có bao nhiêu nghiệm?

Đáp án D

Câu 23: (Đặng Việt Hùng-2018) Tìm giá trị của tham số m để phương trình

sinx1 cos xcosx m 0

có đúng 5 nghiệm thuộc đoạn 0; 2

A

1 0

4

�m

B

1

0 4

  �m

C

1 0

4

 m

D

1

0 4

  m

Đáp án C

Trang 5

Câu 24: (Đặng Việt Hùng-2018) Tìm tập xác định của hàm số

sin cos sin cos

y

A

4

D R �� k k Z � ��

C

4

D R ��  k k Z � ��

Đáp án A

Câu 25: (Đặng Việt Hùng-2018) Phương trình 2cos x 12  có số nghiệm trên đoạn   2 ; 2  là

Đáp án D

Câu 26: (Đặng Việt Hùng-2018) Cho hàm số f x  sin 3x.2 Tính f ' x  

A f ' x  2sin 6x B f ' x  3sin 6x C f ' x  6sin 6x D f ' x   3sin 6x

Đáp án B

Câu 27: (Đặng Việt Hùng-2018) Tìm tất cả các giá trị của tham số m để phương trình:

cos 4x cos 3x m sin x  có nghiệm x 0;12

��� ��

A

1

m 0;

2

� �

�� �

1

2

�� �� �

C m� 0;1 D

1

4

� �

��� ��

Đáp án C

Câu 28: (Đặng Việt Hùng-2018) Tổng các nghiệm của phương trình 2cos3x 2cos2x 1   1 trên đoạn   4 ;6  là

Đáp án C

Câu 29: (Đặng Việt Hùng-2018) Tìm tập xác định D của hàm số ytan 2x

A

\

D R �� kk Z� ��

Trang 6

C

4

D R �� kk Z� ��

Đáp án A

Câu 30: (Đặng Việt Hùng-2018) Chọn phát biểu đúng.

A Các hàm sốysin ,x ycos ,x ycotx đều là hàm số lẻ

B Các hàm sốysin ,x ycos ,x ycotx đều là hàm số chẵn

C Các hàm sốysin ,x ycos ,x ytanx đều là các hàm số lẻ

D Các hàm sốysin ,x ycos ,x ytanx đều là các hàm số chẵn

Câu 31: (Đặng Việt Hùng-2018) Tập giá trị của hàm số ysin 2x 3 cos 2x1 là đoạn

 a b;

Tính tổng T  a b?

Đáp án C

Câu 32: (Đặng Việt Hùng-2018) Tìm góc

; ; ;

6 4 3 2

   

� để phương trình cos 2x 3 sin 2x2cosx0 tương đương với phương trình cos 2 x cosx

A 3

 

B 4

 

C 6

 

D 2

 

Đáp án A

Câu 33: (Đặng Việt Hùng-2018) Phương trình cos 2x4sinx 5 0 có bao nhiêu nghiệm trên khoảng 0;10 ?

Đáp án D

Câu 34: (Đặng Việt Hùng-2018) Có bao nhiêu giá trị nguyên của m để phương trình

cos 2x4cosx m 0 có nghiệm

Đáp án C

Câu 35: (Đặng Việt Hùng-2018) Tìm tập xác định của hàm số sau

cot x

2sin x 1

Trang 7

A

D R \ k , k2 , k2 ; k Z

5

D R \ k2 , k2 ; k Z

C

5

D R \ k , k2 , k2 ; k Z

2

D R \ k , k2 , k2 ; k Z

Đáp án C

Câu 36: (Đặng Việt Hùng-2018) Hàm số nào sau đây là hàm số chẵn?

A y sin xcos3xB y cos2xC y sin xD y sin x+cosx

Đáp án B

Câu 37: (Đặng Việt Hùng-2018) Tính đạo hàm của hàm số y 2sin 3x cos2x 

A y ' 2cos3x sin 2x  B y ' 2cos3x sin 2x 

C y ' 6cos3x 2sin 2x  D y ' 6cos3x 2sin 2x

Đáp án C

Câu 38: (Đặng Việt Hùng-2018) Tìm m để phương trình sau có nghiệm:

sin x m 1 cos x 2m 1   

A

1

m

2

B

m 1 1 m 3

�  

m

 � �

D

1

m 1 3

 � �

Đáp án D

Câu 39: (Đặng Việt Hùng-2018) Giá trị lớn nhất của hàm số y sin x cos 2x sin x 2 3    trên tập xác định của nó là

Đáp án B.

Câu 39: (Đặng Việt Hùng-2018) Tập xác định của hàm số y cot x là

A

D R \ k k Z

2

C D R \ k2 k Z   � 

D

2

Đáp án B

Trang 8

Câu 40: (Đặng Việt Hùng-2018) Số nghiệm của phương trình: 2sin 2x 1 0 thuộc 0;3

là:

Đáp án C

Câu 41: (Đặng Việt Hùng-2018) Đạo hàm của hàm sốy x sinx bằng

A ' sinyx x cosx B ' sin yx x cosx C ' yxcosx D 'y  xcosx

Đáp án B

Câu 42: (Đặng Việt Hùng-2018) Phương trình 2cosx 1 0  có một nghiệm là

A

2

x

3

B x 6

C x 3

D

5 6

Đáp án C

Câu 43: (Đặng Việt Hùng-2018) Đạo hàm của hàm số y sin 2x 2 trên R là

A y ' 2cos4x B y ' 2cos4xC y ' 2sin 4x D y ' 2sin 4x

Đáp án D

Câu 44: (Đặng Việt Hùng-2018) Cho phương trình

tan x tan x 1

4

 � �

� � Diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các họ nghiệm của phương trình gần với số nào nhất trong các số dưới đây?

Đáp án B

Câu 45: (Đặng Việt Hùng-2018) Tìm m để phương trình

5 sin 2x m cos x 1 0

2

đúng 3 nghiệm trên

0;

3



A 2 m � � 1 B 2 m  � 1 C 2 m �  1 D 2 m �

Đáp án B

Câu 46: (Đặng Việt Hùng-2018) Số nghiệm trên khoảng 0; 2của phương trình

4

27 cos x 8sin x 12  là

Trang 9

Đáp án D.

Câu 47: (Đặng Việt Hùng-2018) Phương trình sin 2x cos x sin 7x cos 4x có các họ nghiệm

là :

A x k2 ; x k k 

B x k ; x k k 

C x k ; x k k 

D x k2 ; x k k 

Đáp án C.

Câu 48: (Đặng Việt Hùng-2018) Tổng tất cả các nghiệm của phương trình cos sinx  1 trên 0;2 bằng:

Đáp án D.

Câu 49: (Đặng Việt Hùng-2018) Xét phương trình

sin 3x 3sin 2x cos2x 3sin x 3cos x 2.     Phương trình nào dưới đây tương đương với phương trình đã cho ?

2sinx 1 2cos x 3cos x 1   0

B 2sin x cos x 1 2cos x 1      0

C 2sin x 1 2 cos x 1 cos x 1        0 D 2sin x 1 cos x 1 2cos 1        0

Đáp án D

Câu 50: (Đặng Việt Hùng-2018) Tìm tất cả các giá trị của tham số m sao cho phương trình

vô nghiệm

A m 3 hoặc m 1. B  � �1 m 3 C m 3� hoặc m�1. D   1 m 3

Đáp án D.

Câu 51: (Đặng Việt Hùng-2018) Cho phương trình

5

� � �  �

đặt

t cos x ,

6

� � phương trình đã cho trở thành phương trình nào dưới đây?

A 4t2   8t 3 0. B 4t2   8t 3 0. C 4t2   8t 5 0. D 4t2   8t 5 0.

Đáp án A.

Trang 10

Câu 52: (Đặng Việt Hùng-2018) Tính tổng S các nghiệm của phương trình

2cos 2x 5 sin x cos x   4  4  3 0

trong khoảng 0; 2 

A

11

6

B S 4   C S 5   D

7

6

Đáp án B.

Câu 53: (Đặng Việt Hùng-2018) Tìm số nghiệm thuộc

3

; 2

� ��

� của phương trình 3

3 sinx cos 2x

2

Đáp án B.

Câu 54: (Đặng Việt Hùng-2018) Tìm tất cả các giá trị thực của tham số m để hàm số

y sin x 3cos x m sin x 1    đồng biến trên đoạn 0;2

� �

� �

� �

A m 3 B m 0� C m�3 D m 0

Đáp án B

Câu 55: (Đặng Việt Hùng-2018) Tập xác định của hàm số

tan 2x

cos x

C x 4 k ; x2 2 k , k Z

   

D

2

 �  �

� , k Z�

Đáp án B

Câu 56: (Đặng Việt Hùng-2018) Trong các hàm số sau, hàm số nào là hàm số chẵn?

A y cot 5xB y sin 3xC y cos 2xD y tan 4x

Đáp án C

Câu 57: (Đặng Việt Hùng-2018) Giá trị lớn nhất của hàm số y 3sin3x 4cos3x 5 ?  

Đáp án B

Trang 11

Câu 58: (Đặng Việt Hùng-2018) Tập giá trị của hàm số

cos x 1

s inx 1

 trên 0;2

� �

� �

� � là:

A

1

; 2

2

� �

� �

1

;2 2

� �

� �

1

; 2 2

� �

1

;2 2

� �

Đáp án A.

Ngày đăng: 03/10/2019, 06:40

TỪ KHÓA LIÊN QUAN

w