"HIT HARD & HIT FAST“: nguyên tắc 4D 4D = chọn đúng kháng sinh theo phổ tác dụng, vị trí nhiễm khuẩn và nguy cơ nhiễm VK kháng thuốc, phối hợp kháng sinh hợp lý, liều dùng/chế độ liều ph
Trang 1DƯỢC LÝ LÂM SÀNG TRONG
SỬ DỤNG KHÁNG SINH
Nguyễn Thùy Dương
BM Dược lý
Trang 2Mục tiêu học tập
1 Giải thích được các bước tiếp cận hệ thống trong
lựa chọn kháng sinh
2 Thiết kế được chế độ liều trong sử dụng các kháng
sinh nhóm betalactam, aminoglycosid và
fluorquinolon dựa trên các dữ liệu dược động học
và dược lực học
Trang 4Nguyên lý chung trong điều trị nhiễm khuẩn
Trang 5Chẩn đoán nhiễm khuẩn
– Sốt > 37 o C
Trang 6Chẩn đoán nhiễm khuẩn
Trang 7Test đánh giá nhạy cảm
Bán định lượng
Trang 8Test đánh giá nhạy cảm
Đĩa khuếch tán
Trang 9Test đánh giá nhạy cảm
Nồng độ diệt khuẩn tối thiểu
Đánh giá định lượng: MIC, MBC
MIC < Ctrbình: sensible (S)
MIC > Cmax: resistant (R)
Ctrb < MIC < Cmax: intermediate (I)
Trang 10Test đánh giá nhạy cảm
Xác định MIC trên đĩa 96 giếng
Trang 11Test đánh giá nhạy cảm
Xác định MIC trên đĩa 96 giếng
Trang 12Test đánh giá nhạy cảm
Epsilometer test (Etest)
Trang 13Nguyên lý chung trong điều trị nhiễm khuẩn
Trang 14"HIT HARD & HIT FAST“: nguyên tắc 4D
4D = chọn đúng kháng sinh theo phổ tác dụng, vị trí nhiễm khuẩn và nguy cơ nhiễm VK kháng thuốc, phối hợp kháng sinh hợp lý, liều dùng/chế độ liều phù hợp (PK/PD), xuống thang đúng cách
Denny KJ et al Expert Opin Drug Saf 2016; 15: 667-678.
Trang 15Lựa chọn kháng sinh hợp lý
Vi khuẩn Kháng sinh
Người bệnh
Trang 16Applied Pharmacokinetics and Pharmacodynamics, 4 th edition 2006.
Lựa chọn kháng sinh hợp lý
Trang 17Lựa chọn kháng sinh hợp lý
– Dược động học: AUC, C peak , t 1/2
Trang 18Lựa chọn kháng sinh theo vi sinh
Trang 22Một số b-lactam
Glycopeptid
Fluoroquinolon Tetracyclin
Sulfonamid Một số b-lactam
Nguy cơ chọn lọc
đề kháng
!
Macrolid Aminoglycosid
Trang 23Lựa chọn kháng sinh theo vi sinh
• Kìm khuẩn:
Kìm hãm sự phát triển vi khuẩn
• Diệt khuẩn:
Tiêu diệt vi khuẩn
Telithromycin vs S aureus Moxifloxacin vs S aureus
MIC
MIC Nồng độ
đỉnh
Nồng độ đỉnh
Seral et al, AAC (2003) 47:228 3-2292
Trang 24Bệnh nhân suy giảm miễn dịch
!
Macrolid Tetracyclin
Fluoroquinolones Aminoglycosides b-lactams
Lựa chọn kháng sinh theo vi sinh
Trang 25Lựa chọn kháng sinh dựa trên đặc điểm vi sinh
thuộc vi khuẩn nghi ngờ gây bệnh)
thấp nhất trên đa số vi khuẩn
Trang 26Dược lực học: ảnh hưởng của thời gian
Tất cả các kháng sinh đều phụ thuộc thời gian
killing
Trang 27Nhưng một số kháng sinh có tác dụng diệt khuẩn quá nhanh làm
cho thời gian không còn quan trọng
(tobramycin), hoặc
quinolon
(ciprofloxacin) tại nồng độ 4 X MIC, khả năng làm giảm
4 log số lượng vi khuẩn có thể đạt
sau 4-6h
killing
Dược lực học: ảnh hưởng của thời gian
Trang 28Dược lực học: ảnh hưởng của thời gian
killing
Với kháng sinh lactam, chỉ đạt được giảm 2 log trong
beta-vòng 6 h,
… và tác dụng này không nhanh hơn khi nồng độ vượt quá 4xMIC
Trang 29Dược lực học: tích hợp nồng độ và thời gian
Kháng sinh Tương quan Ảnh hưởng Hậu quả
liều- đáp ứng của thời gian lâm sàng
• Nồng độ cao không quan trọng
• Nồng độ đóng vai trò quyết định
• Thời gian không
là yếu tố ảnh hưởng
Trang 30Lựa chọn kháng sinh theo PK-PD
Liều
dùng
Hiệu quả
Độc tính
Trang 31Dược lực học (Pharmacodynamics)
Liều dùng Nồng độ KS trong máu biến thiên theo
thời gian
Nồng độ KS tại vị trí nhiễm khuẩn
Nồng độ KS tại các cơ quan khác
Hiệu quả điều trị
Tác dụng phụ/độc tính
Dược động học
Trang 32Tối ưu hóa theo PK/PD
Trang 33Kháng sinh phụ thuộc thời gian,
không có PAE
Kháng sinh phụ thuộc nồng độ,
PAE kéo dài
Nguồn: Rybak MJ Am J Med, 2006; 119 (6A): S37-44
Phân loại kháng sinh theo PK/PD
Trang 34Ứng dụng của PK/PD
• Tối ưu hóa chế độ liều
Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics
ISBN 978-0-387-75612-7 ISBN 978-0-387-75613-4 (eBook) DOI 10.1007/978-0-387-75613-4
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2013953328 © Springer Science+Business Media New York 2014 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center Violations are liable to prosecution under the respective Copyright Law
The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made The publisher makes no warranty, express or implied, with respect to the material contained herein
Printed on acid-free paper Springer is part of Springer Science+Business Media ( www.springer.com )
Editors
Alexander A Vinks Division of Clinical Pharmacology Cincinnati Children’s Hospital Medical Center and Department of Pediatrics
University of Cincinnati College of Medicine Cincinnati , OH , USA
Johan W Mouton Department of Medical Microbiology Radboudumc, Radboud University Nijmegen Nijmegen, The Netherlands
Hartmut Derendorf Department of Pharmaceutics University of Florida
Gainesville College of Pharmacy Gainesville , FL , USA
58
the agent will be most used For example, patients in intensive care units (ICU) generally have different pharmacokinetics with a higher volume of distribution and lower clearance than most other patients The use of different pharmacokinetic parameters in the simulations will obviously result in different conclusions with respect to the breakpoints, as was shown in case studies for ceftazidime (Mouton
et al 2005 ) and for other agents (Roberts et al 2009 ) MCS was performed using pharmacokinetic parameters from three different populations, human volunteers, patients with cystic fi brosis, and patients from the ICU In each population the derived breakpoints would have been different On the other hand, Muller et al recently showed that the results of MCS based on volunteer data obtained from phase 1 studies matched actual target attainments in phase 3 studies (Muller et al
2013 ) for ceftobiprole
The entire process as described in this chapter can be summarized in a fl ow gram as depicted in Fig 3.4 The diagram represents the different elements as recently described by the EUCAST and includes both the steps as required for new agents as well as those for established drugs (Mouton et al 2012 ) It should be borne
dia-in mdia-ind that breakpodia-ints are not set dia-in stone and that they are dependent on multiple factors Should one of these factors change, then the breakpoint should be reconsid- ered and possibly be changed if necessary The iterative process of optimizing dos- ing regimens and setting breakpoints continues after the breakpoint has been established.
Correlation Exposure -Effect
Preclinical PK/PD studies Clinical PK/PD studies
Correlation Exposure -Effect
PD target
Qualitative relationship (pk/pd index)
Quantitative relationship (value pk/pd index)
PD target
Clinical Dosing Regimen
Monte Carlo Simulations
Initial PK/PD breakpoint
PK/PD breakpoint
MIC distributions
MCS robustness Target population Dose adjustments
Fig 3.4 Summary of the process of setting PK/PD breakpoints by EUCAST (Mouton et al 2012 )
J.W Mouton
58
the agent will be most used For example, patients in intensive care units (ICU) generally have different pharmacokinetics with a higher volume of distribution and lower clearance than most other patients The use of different pharmacokinetic parameters in the simulations will obviously result in different conclusions with respect to the breakpoints, as was shown in case studies for ceftazidime (Mouton
et al 2005 ) and for other agents (Roberts et al 2009 ) MCS was performed using pharmacokinetic parameters from three different populations, human volunteers, patients with cystic fi brosis, and patients from the ICU In each population the derived breakpoints would have been different On the other hand, Muller et al recently showed that the results of MCS based on volunteer data obtained from phase 1 studies matched actual target attainments in phase 3 studies (Muller et al
Preclinical PK/PD studies Clinical PK/PD studies
Correlation Exposure -Effect
PD target
Qualitative relationship (pk/pd index)
Quantitative relationship (value pk/pd index)
PD target
Clinical Dosing Regimen
Monte Carlo Simulations
Initial PK/PD breakpoint
PK/PD breakpoint
MIC distributions
MCS robustness Target population Dose adjustments
Fig 3.4 Summary of the process of setting PK/PD breakpoints by EUCAST (Mouton et al 2012 )
J.W Mouton
58
the agent will be most used For example, patients in intensive care units (ICU)
generally have different pharmacokinetics with a higher volume of distribution and
lower clearance than most other patients The use of different pharmacokinetic
parameters in the simulations will obviously result in different conclusions with
respect to the breakpoints, as was shown in case studies for ceftazidime (Mouton
pharmacokinetic parameters from three different populations, human volunteers,
patients with cystic fi brosis, and patients from the ICU In each population the
derived breakpoints would have been different On the other hand, Muller et al
recently showed that the results of MCS based on volunteer data obtained from
phase 1 studies matched actual target attainments in phase 3 studies (Muller et al
The entire process as described in this chapter can be summarized in a fl ow
recently described by the EUCAST and includes both the steps as required for new
in mind that breakpoints are not set in stone and that they are dependent on multiple
factors Should one of these factors change, then the breakpoint should be
reconsid-ered and possibly be changed if necessary The iterative process of optimizing
dos-ing regimens and settdos-ing breakpoints continues after the breakpoint has been
established.
Correlation Exposure -Effect
Correlation Exposure -Effect
PD target
Qualitative relationship (pk/pd index)
Quantitative relationship (value pk/pd index)
PD target
Clinical Dosing Regimen
Monte Carlo Simulations
Initial PK/PD breakpoint
PK/PD breakpoint
MIC distributions
MCS robustness Target population
Dose adjustments
J.W Mouton
Trang 35Tối ưu hóa chế độ liều theo PK/PD
• 3 nhóm KS theo chỉ số PK/PD
(i.e skin infection), it is primarily the unbound fraction of drugs that crosses the membrane to the infected tissues such as the subcutaneous adipose tissues, skin, or skeletal muscles An advanced methodology to overcome such problem is to utilize microdialysis as a technique to determine the free fraction of drug exposure at the site of infection An example of implementing this methodology in the clinical setting is shown in Fig 4.1 , where the profiles of unbound ceftobiprole concentra-
tions in different tissues are presented (Barbour et al 2009b ) Note that due to different unbound drug concentrations observed in plasma versus infected sites, an unoptimized dosing scheme could be proposed based on the total plasma drug profile alone, instead of the ideal scenario which is designed based on the free drug concentration.
Thirdly, the MIC-based PKPD modeling also rely on limited PD information
The single time point of MIC is empirical and assumes that it is stationary The MIC value is laboratory dependent; dilution factors, laboratory condition, and techni- cian’s interpretation of what constitutes no growth can contribute to the inter- laboratory variability The rate of bactericidal or bacteriostatic effect with changing drug concentrations is also unknown from such simplified approach Multiple killing patterns can converge to the same MIC when only one time point is measured
Table 4.1 Pattern of MIC-based PKPD index Ambrose et al., Clin Inf Dis 44:79 (2007 ) Antimicrobial agent Bactericidal pattern of in vitro activity PK–PD measure(s) Aminoglycosides Concentration dependent AUC0–24:MIC, Cmax:MIC
β-lactams
Penicillins Time dependent T > MIC Cephalosporins Time dependent T > MIC Carbapenems Time dependent T > MIC Monobactams Time dependent T > MIC
Glycopeptides/lipopeptides Daptomycin Concentration dependent AUC0–24:MIC, Cmax:MIC Oritavancin Concentration dependent T > MIC, Cmax:MIC
Macrolides and clindamycin Azithromycin Time dependent AUC 0–24 :MIC Clarithromycin Time dependent AUC0–24:MIC Teilithromycin Concentration dependent AUC0–24:MIC Metronidazole Concentration dependent AUC0–24:MIC, Cmax:MIC Oxazolidinones
Quinolones Concentration dependent AUC0–24:MIC, Cmax:MIC Tetracyclines
Note: AUC 0–24 :MIC, the ratio of the area under the concentration–time curve at 24 h to the MIC;
Cmax:MIC, the ratio of the maximal drug concentration to the MIC; T > MIC, duration of time a
drug concentration remains above the MIC
4 Principles of Applied Pharmacokinetic–Pharmacodynamic Modeling 65
(i.e skin infection), it is primarily the unbound fraction of drugs that crosses the membrane to the infected tissues such as the subcutaneous adipose tissues, skin, or skeletal muscles An advanced methodology to overcome such problem is to utilize microdialysis as a technique to determine the free fraction of drug exposure at the site of infection An example of implementing this methodology in the clinical setting is shown in Fig 4.1 , where the profiles of unbound ceftobiprole concentra-
tions in different tissues are presented (Barbour et al 2009b ) Note that due to different unbound drug concentrations observed in plasma versus infected sites, an unoptimized dosing scheme could be proposed based on the total plasma drug profile alone, instead of the ideal scenario which is designed based on the free drug concentration.
Thirdly, the MIC-based PKPD modeling also rely on limited PD information The single time point of MIC is empirical and assumes that it is stationary The MIC value is laboratory dependent; dilution factors, laboratory condition, and techni- cian’s interpretation of what constitutes no growth can contribute to the inter- laboratory variability The rate of bactericidal or bacteriostatic effect with changing drug concentrations is also unknown from such simplified approach Multiple killing patterns can converge to the same MIC when only one time point is measured
Antimicrobial agent Bactericidal pattern of in vitro activity PK–PD measure(s)
Aminoglycosides Concentration dependent AUC0–24:MIC, Cmax:MIC
β-lactams
Penicillins Time dependent T > MIC
Cephalosporins Time dependent T > MIC
Carbapenems Time dependent T > MIC
Monobactams Time dependent T > MIC
Clindamycin Time dependent AUC0–24:MIC
Glycopeptides/lipopeptides
Daptomycin Concentration dependent AUC0–24:MIC, Cmax:MICOritavancin Concentration dependent T > MIC, Cmax:MIC
Vancomycin Time dependent AUC0–24:MIC
Macrolides and clindamycin
Azithromycin Time dependent AUC0–24:MIC
Clarithromycin Time dependent AUC0–24:MIC
Teilithromycin Concentration dependent AUC0–24:MIC
Metronidazole Concentration dependent AUC0–24:MIC, Cmax:MICOxazolidinones
Linezolid Time dependent AUC0–24:MIC
Quinolones Concentration dependent AUC0–24:MIC, Cmax:MICTetracyclines
Doxycyeline Time dependent AUC0–24:MIC
Tigecycline Time dependent AUC0–24:MIC
Note: AUC0–24:MIC, the ratio of the area under the concentration–time curve at 24 h to the MIC;
Cmax:MIC, the ratio of the maximal drug concentration to the MIC; T > MIC, duration of time a
drug concentration remains above the MIC
4 Principles of Applied Pharmacokinetic–Pharmacodynamic Modeling
Trang 36Tối ưu hóa chế độ liều theo PK/PD
hoặc ngắn
nhiễm với thuốc
Trang 37Penicilin tự nhiên
Trang 39viêm phổi, NK tiết niệu
hợp AG
Trang 40Cephalosporin- phổ tác dụng