GIG] HAN_QUACH DUY TUAN
2x? —5x7 +3
xl x" —x° +x-—]
xl x7 +25 —3
x2
4) jim XTX + -Wx +7 NX +? —>-11/24
x1 x 2 _]
— 3 —
5)[DHOG_A97} Jim 2VI†3—8—x > 13/12
x0 x
x21 x —]
/ _ 3Ï
x—>0 x
(Thém bot 1 + x)
x—>0 x
(at t= /T+ax)
3/ _ sf
9) lim N2x +1 -N3x41 > 1/75
x0 5x
4 _ 5 _
10) [DHSPHNIL_A99) Jim 2#—l+Ÿ*~2 57/10
x1 x —]
3 — —
x—>l Xx—
sin3x
x—>0 x
3x+te2
l1—cos x cos 2x
x—>0 x
cos 4x —cos x cos 2x
x0 x
ew —-e”
x—0 x
_ fex—sinx
| 7F | cos 5 cos x 19*)[DH TN_A97] lim —> 7
sin’ —
2 1—sin 2x—cos2x
20)[DHSP Vinh_B99] lim ——————————— - - 1
x>0 1+sin 2x —cos 2x 21) lim 722 +4 72-2 —> -1/4
x—»0 sin x
l1—cos3x cos 5x cos 7x
22*)[DHAN_00] lim
sin* 7x
2
Vx? +x4+1
> Oxi +x7 4x41
24) lim (Wx? +x+1+4+x) —> -1/2
25)[DHGT_95] lim yx +1 -v2 —3/2./2 3x =t
26)[HVNH_98] lim at =x —› 1/2
x—l
2
x1 x —]
3 2 3 3
x0
i
30)[DHHH_98] lim(1 + fø”x) xsin x oe
x0
sim 2x _ sin x
x0 sin x
2
32)[DHTM_ 99] jim YE +3 = 008% 1
x20 x?
3/2
33)[ DHQGHN_D00] Jim 227 tL = Ve +h 1
x0 sin x
x? +x+2
34)[ÐĐHSPHN_D00] lim —————“ —>4
x—>! SIn(x +])
` —^j/Ï
ter 36)[CĐSPMGTW1_01] lim “© > 7, x‡n=t
x>nx+n
l—cos 7x 37)[DHDD_BD00] lim ———— —» 49/242
x0 sin* llx |l—cos5xcos7x 38)[DHDD_A00} lim ———>———— > 37/121
x—0 sin’ 11x 39)[DHSP2_A00]
a) lim 7g 2x.1g(7— x) +> 1/2
xo
_ 3h —cosx
( Thém hang sé 1, sau dé dat 3%" _] —7)
_ cos’ x—sin* x —1 40)[ĐHHH_01] lim———~===——— Je al] 5-4
vV COS X — Ncos x
41)[CDSPHN_D00] [jm —-——
x0 sin’ x
Trang 2GIG] HAN_QUACH DUY TUAN
n2 2 nA ( Su dụng giới hạn kẹp - || <= xcos— <|x|)
43)[DHGT_97] lim xcos— >0 ( Chia cả tử và mẫu cho x, lim =0)