Dịch tễ học là gì?Môn học khảo sát nghiên cứu sự phân bố bệnh tật trong quần thể Môn học tìm nguyên nhân, lý giải tại sao có sự phân bố đó trong quần thể - Môn học ứng dụng can thiệp , k
Trang 1ĐẠI CƯƠNG VỀ DỊCH TỄ HỌC
PGS, TS LÊ HOÀNG NINH
VIỆN V.S-YT CÔNG CỘNG
Trang 2Mục tiêu học tập
• Hiểu được dịch tễ học là gì
• Mục tiêu dịch tễ học?
•Vai trò của dịch tễ học: trong phòng ngừa
trong điều trị, trong y tế công cộng, trong xã hội học
Trang 3Dịch tễ học là gì?
Môn học khảo sát nghiên cứu sự phân bố bệnh tật trong quần thể
Môn học tìm nguyên nhân, lý giải tại
sao có sự phân bố đó trong quần thể
- Môn học ứng dụng can thiệp , khống chế
kiểm soát nguyên nhân nhằm bảo vệ ,
nâng cao sức khỏe của quần thể
Trang 4Phương cách tiếp cận của dịch tễ học
• 1 Mô tả: sự phân bố bệnh tật:
-Who?
What? When? -Where? -
Trang 5-Phương cách tiếp cận dịch
tễ học
Trang 6Phương cách tiếp cận dịch
tễ học
3 Làm cách nào ? ứng dụng can thiệp
HOW ? - Can thiệp
Hiệu quả can thiệp?
Trang 7Dịch tễ mô tả và phân
tích
• mô tả : trả lời các câu hỏi: ai (Who), cái gì (What),khi nào( When), và ở đâu (Where)
• phân tích: trả lời 2 câu hỏi: tại sao?
(Why) và làm cách nào ( How)
Trang 8• giúp nhận ra, xác định dân số, nhóm dân số
có nguy cơ cao về một vấn đề sức khỏe nào đó
• giúp có thông tin cần cho phân bố nguồn lựcs
• hình thành một giả thuyết có thể
kiểm định được
Trang 9Thí dụ : mô tả cái gì ?
• thí dụ có bao nhiêu ca nhiễm salmonella?
- Giúp nhận ra/xác định gánh nặng bệnh tật Không có so sánh với nhóm dân số khác
Race # of Salmonella cases Pop size Black 119 1,450,675 White 497 5,342,532
http://www.vdh.virginia.gov/epi/Data/race03t.pdf
Trang 10Dịch tễ phân tích
Giúp kiễm định giả thuyết về căn
nguyên, yếu tố nguy cơ
Kết luận về yếu tố nguy cơ, nguyên nhân của sự phân bố bệnh tật
Nguyên tắc phân tích¸ là có sự so
sánh giửa 2 nhóm:
Trang 12VAI TRÒ CỦA DỊCH TỄ
HỌC
Y học dự phòng và y tế công cộng?
cường sức khỏe, kéo dài tuổi thọ
3 cấp độ dự phòng:
bệnh: chủng ngừa, không tiếp xúc yếu tố nguy cơ
sớm giảm trầm trọng, tử vong và các biến chứng thí dụ sàng lọc bệnh ung thư tử cung…
Cấp III: tertiary prevention: giảm tác động, ảnh hưởng của bệnh Thí dụ phục hồi chức năng sau đột qụi…
Trang 13VAI TRÒ CỦA DỊCH TỄ
HỌC
Mô tả dịch tễ Mô tả lâm sàng
Giả thuyết dịch tễ Giả thuyết lâm sàng ( chẩn đoán sơ bộ)
Phân tích dịch tễ Phân tích lâm sàng
Kiểm định giả thuyết Kiểm định giả thuyết dịch tễ lâm sàng
( nguyên nhân/ yếu tố nguy cơ) ( chẩn đoán xác định)
Can thiệp nguyên nhân Can thiệp điều trị (cộng đồng khỏe mạnh) (bệnh nhân hồi phục)
sàng
Trang 14VAI TRÒ CỦA DỊCH TỄ
HỌC
Chính sách y tế và dịch vụ y tế:
Bao nhiêu bệnh viện? Bệnh viện đa
khoa, chuyên khoa?
Trang 15VAI TRÒ CỦA DỊCH TỄ
HỌC
Xã hội học?
Trang 16# of people in the population
Trang 17Prevalence Example
In 1999, Virginia reported an estimated 253,040
residents over 20 years of age with diabetes The
US Census Bureau estimated that the 1999
Virginia population over 20 was 5,008,863
253,040 Prevalence= = 0.051
Trang 18Prevalence
• Useful for assessing the burden of disease within a population
• Valuable for planning
• Not useful for determining what caused
disease
Trang 19# of new cases of disease over
a specific period of time Incidence = -
# of persons at risk of disease over that specific period of time
Trang 20Incidence Example
• A study in 2002 examined depression among persons
with dementia The study recruited 201 adults with
dementia admitted to a long-term care facility Of the
201, 91 had a prior diagnosis of depression Over the
first year, 7 adults developed depression
7 Incidence = = 0.0636
Trang 21Incidence
• High incidence represents diseases with
high occurrence; low incidence represents diseases with low occurrence
• Can be used to help determine the causes
of disease
• Can be used to determine the likelihood of developing disease
Trang 22Prevalence and Incidence
• Prevalence is a function of the incidence
of disease and the duration of disease
Trang 23Prevalence and Incidence
Prevalence
= prevalent cases
Trang 24Prevalence and Incidence
New prevalence
Incidence Old (baseline)
prevalence
No cases die
or recover = prevalent cases = incident cases
Trang 25Prevalence and Incidence
= prevalent cases = incident cases = deaths or recoveries
Trang 26Time for you to try it!!!
Trang 27Dịch tễ mô tả
Con người, nơi chốn, thời gian
Trang 28Mô tả: con người, khi nào, ở đâu?
Liên hệ tới Person, Place, and Time
• con người (Person)
- Có thể mô tả theo các đặc trưng như:
- Có thể là lúc khởi phát bệnh, khi tiếp
xúc với yếu tố nguy cơ
Trang 29Data Characterized by Person
http://www.vahealth.org/civp/Injury%20in%20Virginia_Report_2004.pdf
Trang 30Data Characterized by Person
http://www.vdh.virginia.gov/std/AnnualReport2003.pdf
Trang 31Data Characterized by Person
http://www.vdh.virginia.gov/epi/cancer/Report99.pdf
Trang 32Data Characterized by Person
http://www.vahealth.org/chronic/Data_Report_Part_3.pdf
Trang 33Dữ liệu thời gian
• thường mô tả dạng biểu đồ graph
- Số ca trục tung (y) axis – thời gian trục hoành (x) axis
• thời khoảng tùy theo cái gì được mô tả
• cho thấy khuynh hướng, mùa, tuần, ngày, thời khoảng dịch
Trang 34Data Characterized by Time
Epi Curve for E.Coli outbreak
Trang 35Data Characterized by Time
http://www.vdh.virginia.gov/std/HIVSTDTrends.pdf
Trang 36Data Characterized by Time
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5153a1.htm
Trang 37Data Characterized by Time
http://www.health.qld.gov.au/phs/Documents/cdu/12776.pdf
Trang 38shadings/colors to indicate the count / rate of cases in an area
Trang 39Data Characterized by Place
http://www.vdh.virginia.gov/epi/Data/region03t.pdf
Trang 40Data Characterized by Place
http://www.vdh.virginia.gov/epi/Data/Maps2002.pdf
Trang 41Data Characterized by Place
http://www.vahealth.org/civp/preventsuicideva/epiplan%202004.pdf
Trang 42Data Characterized by Place
http://www.vahealth.org/civp/preventsuicideva/epiplan%202004.pdf
Trang 43Data Characterized by Place
Source: Olsen, S.J et al N Engl J Med 2003 Dec 18; 349(25):2381-2
Trang 445 Minute Break
Trang 45Dịch tễ phân tích
Hypotheses and Study Designs
Trang 46Descriptive vs Analytic
Epidemiology
• Descriptive Epidemiology deals with the questions: Who, What, When, and Where
• Analytic Epidemiology deals with the
remaining questions: Why and How
Trang 47Analytic Epidemiology
• Used to help identify the cause of disease
• Typically involves designing a study to test hypotheses developed using descriptive epidemiology
Trang 48Borgman, J (1997) The Cincinnati Enquirer King Features Syndicate
Trang 49Exposure and Outcome
A study considers two main factors:
exposure and outcome
• Exposure refers to factors that might influence one’s risk of disease
• Outcome refers to case definitions
Trang 50Case Definition
• A set of standard diagnostic criteria that
must be fulfilled in order to identify a
person as a case of a particular disease
• Ensures that all persons who are counted
as cases actually have the same disease
• Typically includes clinical criteria (lab
results, symptoms, signs) and sometimes restrictions on time, place, and person
Trang 51Developing Hypotheses
• A hypothesis is an educated guess about
an association that is testable in a
Trang 52Example
were more likely to become ill
example, ill persons are those who have diarrhea and fever
church picnic were more likely to have laboratory- confirmed Salmonella
Trang 55Experimental Studies
• Can involve individuals or communities
• Assignment of exposure status can be
Trang 56Experimental Study Examples
• Randomized clinical trial to determine if
giving magnesium sulfate to pregnant
women in preterm labor decreases the risk
of their babies developing cerebral palsy
• Randomized community trial to determine if fluoridation of the public water supply
decreases dental cavities
Trang 58Cross-Sectional Studies
• Exposure and outcome status are
determined at the same time •
Examples include:
- Behavioral Risk Factor Surveillance System (BRFSS) - http://www.cdc.gov/brfss/ - National Health and Nutrition Surveys (NHANES) -
http://www.cdc.gov/nchs/nhanes.htm
• Also include most opinion and political polls
Trang 59Prospective Assessed at Followed into the
beginning of study future for outcome Retrospective Assessed at some Outcome has
point in the past already occurred
Trang 60Cohort Studies
Study Population
Exposure is self selected
Non-exposed Exposed
Follow through
time
Trang 61Cohort Study Examples
• Study to determine if smokers have a
higher risk of lung cancer
• Study to determine if children who receive influenza vaccination miss fewer days of
school
• Study to determine if the coleslaw was the cause of a foodborne illness outbreak
Trang 63Case-Control Studies
Study Population
Controls Cases
Trang 64Case-Control Study Examples
• Study to determine an association between autism and vaccination
• Study to determine an association between lung cancer and radon exposure
• Study to determine an association between salmonella infection and eating at a fast food restaurant
Trang 65Cohort versus Case-Control Study
Trang 66Classification of Study Designs
Source: Grimes DA, Schulz KF Lancet 2002; 359: 58
Trang 67Time for you to try it!!!
Trang 685 Minute Break
Trang 69Analytic Epidemiology
Measures of Association
and Statistical Tests
Trang 70Measures of Association
• Assess the strength of an association
between an exposure and the outcome
of interest
• Indicate how more or less likely one is to
develop disease as compared to another
• Two widely used measures:
Trang 712 x 2 Tables
Used to summarize counts of disease and exposure in
order to do calculations of association
Outcome Exposure Yes No Total
Total a + c b + d a + b + c + d
Trang 722 x 2 Tables
a = number who are exposed and have the outcome b = number who are exposed and do not have the outcome c = number who are not exposed and have the outcome d = number who are not exposed and do not have the outcome
**
a + b = total number who are exposed c + d = total
number who are not exposed a + c = total number
who have the outcome b + d = total number who do
not have the outcome a + b + c + d = total study
population
Trang 73Relative Risk
• The relative risk is the risk of disease in the
exposed group divided by the risk of disease in the non-exposed group
• RR is the measure used with cohort studies
Trang 74Relative Risk Example
Trang 75Odds Ratio
• In a case-control study, the risk of disease cannot be directly calculated because the population at risk is not known
• OR is the measure used with case-control studies
ax d
OR =
bx c
Trang 76Odds Ratio Example
Trang 77Interpretation
Both the RR and OR are interpreted as follows:
= 1 - indicates no association > 1 - indicates a positive association < 1 - indicates a negative association
Trang 78Interpretation
• If the RR = 5
- People who were exposed are 5 times more likely to have the outcome when compared with persons who were not exposed
• If the RR = 0.5
- People who were exposed are half as likely to have the outcome when compared with persons who were not exposed
Trang 79Tests of Significance
• Indication of reliability of the association that
was observed
• Answers the question “How likely is it that the
observed association may be due to chance?”
• Two main tests:
1 95% Confidence Intervals (CI)
2 p-values
Trang 8095% Confidence Interval (CI)
• The 95% CI is the range of values of the measure of association (RR or OR) that has a 95% chance of containing the true
RR or OR
• One is 95% “confident” that the true
measure of association falls within this
interval
Trang 8195% CI Example
Gonorrhea 2.4 1.3 - 4.4 Trichomonas 1.9 1.3 - 2.8 Yeast 1.3 1.0 - 1.7 Other vaginitis 1.7 1.0 - 2.7 Herpes 0.9 0.5 - 1.8 Genital warts 0.4 0.2 - 1.0
Grodstein F, Goldman MB, Cramer DW Relation of tubal infertility to history of sexually transmitted diseases Am J Epidemiol 1993 Mar 1;137(5):577-84
Trang 82Interpreting 95% Confidence Intervals
• To have a significant association between
exposure and outcome, the 95% CI
should not include 1.0
• A 95% CI range below 1 suggests less risk
of the outcome in the exposed population
• A 95% CI range above 1 suggests a higher
risk of the outcome in the exposed
population
Trang 83p-values
• The p-value is a measure of how likely the
observed association would be to occur by
chance alone, in the absence of a true
association
• A very small p-value means that you are very
unlikely to observe such a RR or OR if there was
no true association
• A p-value of 0.05 indicates only a 5% chance
that the RR or OR was observed by chance
alone
Trang 84p-value Example
Gonorrhea 2.4 1.3 - 4.4 0.004 Trichomonas 1.9 1.3 - 2.8 0.001 Yeast 1.3 1.0 - 1.7 0.04 Other vaginitis 1.7 1.0 - 2.7 0.04 Herpes 0.9 0.5 - 1.8 0.80 Genital warts 0.4 0.2 - 1.0 0.05
Grodstein F, Goldman MB, Cramer DW Relation of tubal infertility to history of sexually transmitted diseases Am J Epidemiol 1993 Mar 1;137(5):577-84
Trang 85Time for you to try it!!!
Trang 86Questions???
Trang 87Epidemiology Pocket Guide: Quick Review Any Time!
• Measures of Disease Frequency •
Classification of Study Designs •2 x
2 Tables
• Measures of Association •
Tests of Significance
http://www.vdh.virginia.gov/EPR/Training.asp
Trang 88References and Resources
• Centers for Disease Control and Prevention (1992) Principles of Epidemiology: 2 nd Edition Public Health Practice Program Office: Atlanta, GA
• Gordis, L (2000) Epidemiology: 2 nd Edition W.B Saunders Company: Philadelphia, PA
• Gregg, M.B (2002) Field Epidemiology: 2 nd Edition Oxford University Press: New York
• Hennekens, C.H and Buring, J.E (1987) Epidemiology in
Medicine Little, Brown and Company: Boston/Toronto
Trang 89References and Resources
• Last, J.M (2001) A Dictionary of Epidemiology: 4 th Edition Oxford University Press: New York
• McNeill, A (January 2002) Measuring the Occurrence of Disease:
Prevalence and Incidence Epid 160 lecture series, UNC Chapel Hill
School of Public Health, Department of Epidemiology • Morton, R.F,
Hebel, J.R., McCarter, R.J (2001) A Study Guide to Epidemiology and Biostatistics: 5 th Edition Aspen Publishers, Inc.: Gaithersburg, MD
• University of North Carolina at Chapel Hill School of Public Health,
Department of Epidemiology, and the Epidemiologic Research &
Information Center (June 1999) ERIC Notebook Issue 2
http://www.sph.unc.edu/courses/eric/eric_notebooks.htm
Trang 90References and Resources
• University of North Carolina at Chapel Hill School of Public Health, Department of Epidemiology, and the Epidemiologic Research & Information Center (July 1999) ERIC Notebook Issue 3
http://www.sph.unc.edu/courses/eric/eric_notebooks.htm
• University of North Carolina at Chapel Hill School of Public Health, Department of Epidemiology, and the Epidemiologic Research & Information Center (September 1999) ERIC Notebook Issue 5
http://www.sph.unc.edu/courses/eric/eric_notebooks.htm
• University of North Carolina at Chapel Hill School of Public Health, Department of Epidemiology (August 2000) Laboratory Instructor’s Guide: Analytic Study Designs Epid 168 lecture series
http://www.epidemiolog.net/epid168/labs/AnalyticStudExerInstGuid2 000.pdf