Phương trình lượng giác tiếp:
Bail, gpt:1,3sin? x+8sin xcos x+ 4cos? x =0; 4,5sin? x+^3 sin xeos x +6cos”x = 5
2, 4sinˆ x+3A3sin2x—2cos? x=4; 5,2sin* x +4sin xcosx -4cos’x-1=0
3, V3 cos’ x+2sin xcos x—/3 sin” x— x2 =0 6ó, 4cos”“ x— 6sin” x+5sin2x— 4= 0
Bài 2:†tìm m để các pt sau có nghiệm:
1,cos’ x+2sinxcosx—sin’ x=m 3, 5cos? x—2V3sinxcosx+3sin? x=m
2, 4cos’ x—V3sin2x+2sin? x=m
Bai3:gpt:1, 3(sinx+cosx) +2sinxcosx+3=0 3 2sinxcosx—(sinx+cosx) +1=0
2 [I+2](sinx+ os x) —2sin xeosx—|I+2] =0 4: V2 {sin x +cos x} —SIn xcos x=Ì
5,2sỈn2x—2|sin x cos x) +1= 0:6; sin xcos x +2sin x+2cosx=2:7,1+tan x= 2W2 sin x
g, SInx + cosx = —— l+sinxc0sx.o cosx—sinx—sinxcosx+1=0 42 Vcosx+vsinx =1
6( cos x—sin x} Fsinxcosx+6=0 |, sin? x + cos’ x = +— V3 (tan x +cot x) =]
43, sim’ x+cos x=] 25In2x 14 2(sinx+cosx) =tanx+cotx, 45, [Sin x— cos x|+ 4sin 2x =
Bai 4:gpt:
1,cos“ x+cos“ 2x+cos“ 3x+cos“ˆ 4x=2, 2; sinˆ x+sinˆ 2x+sinˆ 3x+sinˆ 4x= 2
3, sin’ 3x— COS” Ax = sin” 5x -3c0S* 6x 4; sin’ x = cos” 2x + cos” 3x ;5, sinˆ 3x— sin” 2x—sin” x=0; 6, g:5m x+sin° 2x+sin 3x = 7 COS x+cos“ 2x+cos 3=, 8 cos’ x + cos’ 2x+ cos’ 3x = 1
sin’ 2x— cos’ 8x = sinf 2 10x
> 9x cos3x +sin 7x = 2sin” ln Ì“2co 5
27
3
cos’ x +cos* 2x+cos* 3x +cos’ 4x = —
sin” 4x— cos” 6x =sin{ 10,52 +10x]
43 sin’ x+ Cos TT A - 44 SI x+SIn 3x= cos“ 2x+cos“ 4x
45 SỈN x+€0Sx= 77, 16 2cos* x +2cos* 2x+2cos’ 3x—3=cos 4x(2sin2x +1)
17;,sin5x+sin x+2sin” x =1; 18, sin x + sin 2x + sin 3x = cos x + eos 2x +cos 3x
19,sinx+sin2x+sin3x =0; 20, sinx+sin 2x + sin 3x +sin 4x = 0
22,cosx+cos2x + cos3x =0; 23: cos x+cos 2x + cos 3x + cos 4x = 0
4 4 = sin” x+cos” x=— - 6 6 sin® x+cos® x =—sin’ 2x - 6 6.„._ 1; 2
27; sin” x+ 0s” x = c0s 4x 2g: 6| sin x+Cos 1] +3sin 6x =0
sin’ ~ + cost ~ =1—sin x sin® x+cos® x =sin2 sin’ x+cos' x =sin2x——
31; sin x+sin 2x + sin3x = Ï+cos x+ cos2x ; 32: Ï+ cos x+ cos 2x + cos3x = 0
33: sin 3x —sin x +sin 2x =0- 34-(2sinx—1)(2sin2x+1) =3—4cos* x
35; ( cos x —sin x) sin xcos x = cos x cos 2x 3g: cos* x—sin® x = sin x—cosx: 37: cos’ x+sin’ x =sin x—cos x
38, cos” x+sin” x+cos x= 0; 39: cos” x+cos” x+2sinx—2=0; 40: sin x+sin” x+cos” x =0