Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E... Từ D vẽ đường thẳng song song với AH cắt AC tại E... Trên cạnh BC lấy điể
Trang 1(Thêi gian lµm bµi 120 phót)
Bµi 1 T×m gi¸ trÞ n nguyªn d¬ng:
Trang 2Bài 3 a) Tìm x biết: 2 x + 3 = x + 2
b) Tìm giá trị nhỏ nhất của A = x − 2006 + 2007 − x Khi x thay đổi
Bài 4 Hiện nay hai kim đồng hồ chỉ 10 giờ Sau ít nhất bao lâu thì 2 kim đồng hồ
nằm đối diện nhau trên một đờng thẳng
b) Chứng minh rằng : Với mọi số nguyờn dương n thỡ :
Trang 3a) Số A được chia thành 3 số tỉ lệ theo 2 3 1: :
phõn giỏc của gúc ABD cắt AC tại M Chứng minh:
a) Tia AD là phõn giỏc của gúc BAC
Bài 2 Thực hiện phép tính: (4 điểm)
+ Nếu - 2 > x Không có giá trị của x thoả mãn
b) Tìm giá trị nhỏ nhất của A =x − 2006 + 2007 − x Khi x thay đổi
Trang 4Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 ≤ x ≤ 2007
Bài 4 Hiện nay hai kim đồng hồ chỉ 10 giờ Sau ít nhất bao lâu thì 2 kim đồng hồ
nằm đối diện nhau trên một đờng thẳng (4 điểm mỗi)
Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhautrên một đờng thẳng, ta có:
1 11
y x 1
y 12
x 1
12 y
x = => = = − = =
x =
11
4 x ) vũng ( 33
Bài 5 Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM Trên tia đối tia
MA lấy điểm D sao cho DM = MA Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua
I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E Chứng minh: AE = BC (4
điểm mỗi)
Đờng thẳng AB cắt EI tại F
∆ABM = ∆DCM vì:
AM = DM (gt), MB = MC (gt), ãAMB = DMC (đđ) => BAM = CDM
=>FB // ID => ID⊥AC
Và FAI = CIA (so le trong) (1)
IE // AC (gt) => FIA = CAI (so le trong) (2)
Từ (1) và (2) => ∆CAI = ∆FIA (AI chung) => IC = AC = AF (3)
và E FA = 1v (4)
Mặt khác EAF = BAH (đđ), D
M
Trang 5BAH = ACB ( cïng phô ABC) => EAF = ACB (5)
b) Chứng minh rằng : Với mọi số nguyên dương n thì :
c) Số A được chia thành 3 số tỉ lệ theo 2 3 1: :
Bài 4: (4 điểm)
Cho tam giác ABC, M là trung điểm của BC Trên tia đối của của tia MA lấy điểm E sao cho ME
= MA Chứng minh rằng:
a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK Chứng minh ba điểm I , M , K thẳng hàng
c) Từ E kẻ EH ⊥BC (H∈BC) Biết ·HBE = 50 o ; ·MEB =25 o Tính ·HEM và ·BME
Bài 5: (4 điểm)
phân giác của góc ABD cắt AC tại M Chứng minh:
Trang 6c) Tia AD là phân giác của góc BAC
Trang 7( )
1 23
1 23
1 72
3 3
1 52
x x
Trang 8Vì ∆AMC = ∆EMB ⇒ ·MAC = ·MEB
(2 góc có vị trí so le trong được tạo bởi đường
Nên ∆AMI = ∆EMK ( c.g.c )
Suy ra ·AMI = ·EMK
Mà ·AMI + ·IME = 180o ( tính chất hai góc kề bù )
A
C I
200
M A
D
Trang 9Nờn ãBME = ãHEM + ãMHE = 15o + 90o = 105o
( định lý gúc ngoài của tam giỏc )
Bài 5: (4 điểm)
a) Chứng minh ∆ADB = ∆ADC (c.c.c)
suy ra DAB DACã =ã
Do đú ãDAB= 20 : 2 10 0 = 0
b) ∆ABC cõn tại A, mà à 0
20
A= (gt) nờn ãABC= (180 0 − 20 ) : 2 80 0 = 0
∆ABC đều nờn ãDBC= 60 0
Tia BD nằm giữa hai tia BA và BC suy ra ãABD= 80 0 − 60 0 = 20 0
Tia BM là phõn giỏc của gúc ABD
nờn ãABM = 10 0
Xột tam giỏc ABM và BAD cú:
AB cạnh chung ; BAMã =ãABD= 20 ; 0 ãABM =DABã = 10 0
Vậy: ∆ABM = ∆BAD (g.c.g)
suy ra AM = BD, mà BD = BC (gt) nờn AM = BC
Đề số 3:
đề thi học sinh giỏi
Môn Toán Lớp 7
(Thời gian làm bài 120 phút)
Câu 1: Tìm tất cả các số nguyên a biết a 4≤
Trang 10b Gọi N là trung điểm của DE Trên tia đối của tia NA lấy M sao cho NA = NM.Chứng minh: AB = ME và ABC = EMA
Trang 112
+
+ +
Trang 12đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Trang 131 3 3
1
2003 2
3
12
5 5 2
1 4
3 3 2
a
a
a là số nguyênb- Tìm số nguyên x,y sao cho x - 2xy + y = 0
Câu 3 ( 2 điểm)
a- Chứng minh rằng nếu a + c = 2b và 2bd = c (b+d) thì
d
c b
a = với b,d khác 0b- Cần bao nhiêu số hạng của tổng S = 1+2+3+… để đợc một số có ba chữ số giốngnhau
Câu 4 ( 3 điểm)
Cho tam giác ABC có góc B bằng 450 , góc C bằng 1200 Trên tia đối của tia CB lấy
điểm D sao cho CD = 2CB Tính góc ADE
Câu 5 ( 1điểm)
Tìm mọi số nguyên tố thoả mãn : x2 - 2y2 =1
Đáp án đề 4
1.a Thực hiện theo từng bớc đúng kết quả -2 cho điểm tối đa 1Điểm
1.b Thực hiện theo từng bớc đúng kết quả 14,4 cho điểm tối đa 1Điểm
Trang 143 ) 1 (
+ +
= +
+ +
a
a a
a a
1 2
1 2 1
y
x x
1 2
1 2 1
y
x x
y
Vậy có 2 cặp số x, y nh trên thoả mãn điều kiện đầu bài
0,25
0,250,250,253.a Vì a+c=2b nên từ 2bd = c (b+d) Ta có: (a+c)d=c(b+d)
Hay ad=bc Suy ra
d
c b
a
= ( ĐPCM)
0,50,53.b Giả sử số có 3 chữ số là aaa=111.a ( a là chữ số khác 0)
Gọi số số hạng của tổng là n , ta có :
a a
n
n
37 3 111 2
) 1 (
Nếu n+1=37 thì n = 36 lúc đó 666
2
) 1 (n+ =
Vậy số số hạng của tổng là 36
0,250,25
0,54
Trang 15Mà BAH = 150 nên tam giác AHB cân tại H
Do đó tam giác AHD vuông cân tại H Vậy ADB =
450+300=750
0,5
0,51,01,0
5 Từ : x2-2y2=1suy ra x2-1=2y2
Nếu x chia hết cho 3 vì x nguyên tố nên x=3 lúc đó y= 2
nguyên tố thoả mãn
Nếu x không chia hết cho 3 thì x2-1 chia hết cho 3 do đó 2y2
chia hết cho 3 Mà(2;3)=1 nên y chia hết cho 3 khi đó x2=19
không thoả mãn
Vậy cặp số (x,y) duy nhất tìm đợc thoả mãn điều kiện đầu bài
là (2;3)
0,250,25
0,250,25
Đề số 5:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Trang 16Một con thỏ chạy trờn một con đường mà hai phần ba con đường băng qua đồng cỏ
và đoạn đường cũn lại đi qua đầm lầy Thời gian con thỏ chạy trờn đồng cỏ bằng nửa thờigian chạy qua đầm lầy
Hỏi vận tốc của con thỏ trờn đoạn đường nào lớn hơn ? Tớnh tỉ số vận tốc của conthỏ trờn hai đoạn đường ?
Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm Từ H vẽ tia
Hx vuụng gúc với đường thẳng BC Lấy A thuộc tia Hx sao cho HA = 6 cm
1, ∆ABC là ∆ gỡ ? Chứng minh điều đú
2, Trờn tia HC lấy điểm D sao cho HD = HA Từ D vẽ đường thẳng song song với
AH cắt AC tại E
Chứng minh: AE = AB
Đề số 6:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Bài 1 (4đ):
Cho cỏc đa thức:
A(x) = 2x5 – 4x3 + x2 – 2x + 2 B(x) = x5 – 2x4 + x2 – 5x + 3C(x) = x4 + 4x3 + 3x2 – 8x + 4 3
16
1, Tớnh M(x) = A(x) – 2B(x) + C(x)
2, Tớnh giỏ trị của M(x) khi x = − 0, 25
3, Cú giỏ trị nào của x để M(x) = 0 khụng ?
Bài 2 (4đ):
Trang 17đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Trang 18đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
4 3
3 5
2 3
1 ) 4 ( , 0
−
−
−
− +
) 2007 (
c b
b a
+ +
Trang 19Cho ∆ABC nhọn Vẽ về phớa ngoài ∆ABC cỏc ∆ đều ABD và ACE.
Đề số 9:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Bài 1: (2 điểm)
5
4 7 25 , 1 ).(
8 0 7 8 , 0
02 , 0 ).
19 , 8 81 , 11
=
B
Trong hai số A và B số nào lớn hơn và lớn hơn bao nhiêu lần ?
b) Số A=101998 −4 có chia hết cho 3 không ? Có chia hết cho 9 không ?
Câu 2: (2 điểm)
Trên quãng đờng AB dài 31,5 km An đi từ A đến B, Bình đi từ B đến A Vận tốc An
so với Bình là 2: 3 Đến lúc gặp nhau, thời gian An đi so với Bình đi là 3: 4
Tính quãng đờng mỗi ngời đi tới lúc gặp nhau ?
a) Chứng minh rằng: ∆ABF = ∆ACE
b) FB ⊥ EC
Câu 5: (1 điểm)
Tìm chữ số tận cùng của
Trang 209 9 0
Trang 21Đề số 10:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
2005
1890 : 12
5 11
5 5 , 0 625 , 0
12
3 11
3 3 , 0 375 , 0 25 , 1 3
5 5 , 2
75 , 0 1 5 ,
−
+ +
− +
− +
− +
1
3
1 3
1 3
1 3
a
= thì
d c
d c b a
b a
3 5
3 5 3 5
3 5
3 2003
2 2004
Chứng minh rằng 2a, 2b có giá trị nguyên
b) Độ dài 3 cạnh của tam giác tỉ lệ với 2; 3; 4 Ba đờng cao tơng ứng với ba cạnh đó
tỉ lệ với ba số nào ?
Câu 4: (3 điểm)
Cho tam giác cân ABC (AB = AC0 Trên cạnh BC lấy điểm D, trên tia đối của tia CBlấy điểm E sao cho BD = CE Các đờng thẳng vuông góc với BC kẻ từ D và E cắt AB, AClần lợt ở M, N Chứng minh rằng:
a) DM = EN
b) Đờng thẳng BC cắt MN tại trung điểm I của MN
c) Đờng thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổitrên cạnh BC
Câu 5: (1 điểm)
Tìm số tự nhiên n để phân số
3 2
8 7
−
−
n
n có giá trị lớn nhất
Trang 22Đề số 11:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
11 : 13
3 7
3 6 , 0 75 , 0
5 : 3
25 , 0 22 7
21 , 1 10
b) Tìm các giá trị của x để: x+ 3 + x+ 1 = 3x
Câu 2: (2 điểm)
a) Cho a, b, c > 0 Chứng tỏ rằng:
a c
c c b
b b a
a M
+
+ +
+ +
1
25
1 15
1 5
1
<
+ + + +
Đề số 12:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Bài 1: (2 điểm)
a) Chứng minh rằng với mọi số n nguyên dơng đều có:
A= 5n( 5n + 1 ) − 6n( 3n + 2 ) 91b) Tìm tất cả các số nguyên tố P sao cho P2 +14 là số nguyên tố
Bài 2: ( 2 điểm)
a) Tìm số nguyên n sao cho n2 + 3 n− 1
Trang 23b) Biết
c
bx ay b
az cx a
b x
Cho ∆ABC có góc A bằng 1200 Các đờng phân giác AD, BE, CF
a) Chứng minh rằng DE là phân giác ngoài của ∆ADB
b) Tính số đo góc EDF và góc BED
Bài 5: (1 điểm)
Tìm các cặp số nguyên tố p, q thoả mãn:
2 2
5 1997
5 p+ = p +q
Đề số 13:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
1 12 : 3
10 10
3 1
4
3 46 25
1 230 6
5 10 27
5 2 4
1 13
Bài 2: (3 điểm)
a) Chứng minh rằng: A= 36 38 + 41 33 chia hết cho 77
b) Tìm các số nguyên x để B= x− 1 + x− 2 đạt giá trị nhỏ nhất
c) Chứng minh rằng: P(x)=ax3+bx2+cx+d có giá trị nguyên với mọi x nguyên khi
và chỉ khi 6a, 2b, a + b + c và d là số nguyên
Bài 3: (2 điểm)
a) Cho tỉ lệ thức
d
c b a
= Chứng minh rằng:
Trang 24
2 2
2 2
d c
b a cd
b a d
c
b a
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
3
2002 2
2003 1
1
4
1 3
1 2 1
+ + +
+
+ + +
t y
x t
z x
t z
y t
z y
x
+ +
= + +
= + +
= +
+
chứng minh rằng biểu thức sau có giá trị nguyên
z y
x t y x
t z x t
z y t z
y x P
+
+ + +
+ + +
+ + +
Trang 26Đề số 15:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
Tính :
68
1 52
1 8
1 39
1 6 1
2
512 2
512 2
z z
x
y y
z
x
+ +
=
− +
= + +
= +
Cho tam giác ABC, AK là trung tuyến Trên nửa mặt phẳng không chứa B, bờ là AC,
kẻ tia Ax vuông góc với AC; trên tia Ax lấy điểm M sao cho AM = AC Trên nửa mặtphẳng không chứa C, bờ là AB, kẻ tia Ay vuông góc với AB và lấy điểm N thuộc Ay saocho AN = AB Lấy điểm P trên tia AK sao cho AK = KP Chứng minh:
a2 + 2 ≤ 2 ; n là số tự nhiên lớn hơn 0.
Đề số 16:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
Tính:
Trang 277 : 34 34
1 2 17
14 2
4
1 5 19
16 3 4
1 5 9
3 8
1 180
1 108
1 54
1 8
1 3
Câu 3: (2 điểm)
a) Tìm x, y, z biết:
3 2
y x
= ;
5 4
z y
= và x2 −y2 = − 16b) Cho f(x) =ax2 +bx+c Biết f(0), f(1), f(2) đều là các số nguyên
Chứng minh f(x) luôn nhận giá trị nguyên với mọi x nguyên
Câu 4: (2,5 điểm)
Cho tam giác ABC có ba góc nhọn, đờng cao AH ở miền ngoài của tam giác ABC ta
vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông Kẻ EM, FN cùngvuông góc với AH (M, N thuộc AH)
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm) Tính nhanh:
100 99
4 3 2 1
) 6 , 3 21 2 , 1 63 ( 9
1 7
1 3
1 2
1 ) 100 99
3 2 1
(
− + +
− +
+ + +
2 25
2 3 10 1
) 15
4 ( 35
2 3 7
2 14
Trang 28b) Tìm x nguyên để x+1 chia hết cho x−3
Câu 3: ( 2 điểm)
a) Tìm x, y, z biết
216
3 64
3 8
3x = y = z và 2x2 + 2y2 −z2 = 1b) Một ô tô phải đi từ A đến B trong thời gian dự định Sau khi đi đợc nửa quãng đ-ờng ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 15 phút
Tính thời gian ô tô đi từ A đến B
1
102
1 101
1 200
1 99
1
4
1 3
1 2
1
Đề số 18:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
a) Thực hiện phép tính:
7 , 0 875 , 0 6
1 1
5
1 25 , 0 3 1
11
7 9
7 4 , 1
11
2 9
2 4 , 0
1 28
1 3
1 15
1 10
Hỏi khi gặp nhau thì họ cách Bắc Giang bao nhiêu km ?
Câu 3: (2 điểm)
a) Cho đa thức f(x) =ax2 +bx+c (a, b, c nguyên)
CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3
b) CMR: nếu
d
c b
a = thì
bd b
bd b
ac a
ac a
5 7
5 7 5 7
5 7
2
2 2
Trang 29đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
a) Tính giá trị của biểu thức:
50
31 93
14 1 3
1 5 12 6
1 6
5 4
19
2 3
1 6 15 7
3 4 31
11 1
1
3
1 3
1 2
2 3
a = Chứng minh rằng: 22
) (
) (
d c
b a cd
Trang 30Đề số 20:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1: (2 điểm)
a) Thực hiện phép tính:
3
11 7
11 2 , 2 75 , 2
13
3 7
3 6 , 0 75 , 0
+ +
−
+ +
−
=
) 281 1 ( 251 3 ) 281 3 251
az cx a
b x
Cho ∆ABC vuông cân tại A Gọi D là điểm trên cạnh AC, BI là phân giác của
∆ABD, đờng cao IM của ∆BID cắt đờng vuông góc với AC kẻ từ C tại N
Tính góc IBN ?
Câu 5: (2 điểm)
Số 2100 viết trong hệ thập phân tạo thành một số Hỏi số đó có bao nhiêu chữ số ?
Trang 31Đề số 21:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
− +
−
− +
−
+ +
−
=
75 , 0 1 5 , 1
25 , 1 3
5 5 , 2 12
5 11
5 5 , 0 625 , 0
12
3 11
3 3 , 0 375 , 0 : 2005
P
b) Chứng minh rằng:
10 9
19
4 3
7 3 2
5 2 1
3
2 2 2
2 2 2 2
Cho tam giác ABC, M là trung điểm của BC Trên nửa mặt phẳng không chứa C có
bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB Trên nửa mặtphẳng không chứa B có bờ AC vẽ tia Ay vuông góc với AC Trên tia đó lấy điểm E sao cho
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Bài 1: (2 điểm)
a) Tính giá trị của biểu thức:
Trang 3213 : ) 75 , 2 ( 53 , 3 88 , 0 : 25 11
4
3 125 505
, 4 3
4 4 : 624 , 81
2
2 2
1 2
1
2
1 2
1
2
1 2
1 2
1
2004 2002
4 2 4 6
101 10
Điều đó đúng hay sai ? vì sao ?
b) Cho dãy tỉ số bằng nhau:
d
d c b a c
d c b a b
d c b a a
d c b
Tính
c b
a d b a
d c a d
c b d c
b a M
+
+ + +
+ + +
+ + +
+
=
Bài 4: (3 điểm)
Cho tam giác nhọn ABC, AB > AC phân giác BD và CE cắt nhau tại I
a) Tính các góc của ∆DIE nếu góc A = 600
b) Gọi giao điểm của BD và CE với đờng cao AH của ∆ABC lần lợt là M và N.Chứng minh BM > MN + NC
2
+ +
+ + +
+ +
z x
z y
y z
y x x
Đề số 23:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Trang 33Cho
z y x
t y
x t
z x
t z
y t
z y
x
+ +
= + +
= + +
= +
CMR biểu thức sau có giá trị nguyên:
z y
x t y x
t z x t
z y t z
y x
P
+
+ + +
+ + +
+ + +
1 Trên tia đối của tia EB lấy điểm D sao cho ED = BC
Chứng minh tam giác CED là tam giác cân
Bài 5: (1 điểm)
Tìm các số a, b, c nguyên dơng thoả mãn :
a3 + 3a2 + 5 = 5b và a+ 3 = 5c
Đề số 24:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
z c
b a
y c
b a
= +
Thì
z y x
c z
y x
b z
y x
= +
Bài 3: (2 điểm)
Hai xe máy khởi hành cùng một lúc từ A và B, cách nhau 11km để đi đến C (ba địa
điểm A, B, C ở cùng trên một đờng thẳng) Vận tốc của ngời đi từ A là 20 km/h Vận tốccủa ngời đi từ B là 24 km/h
Tính quãng đờng mỗi ngời đã đi Biết họ đến C cùng một lúc
Bài 4: (3 điểm)
Trang 34Cho tam giác ABC có góc A khác 900, góc B và C nhọn, đờng cao AH Vẽ các điểm
D, E sao cho AB là trung trực của HD, AC là trung trực của HE Gọi I, K lần lợt là giao
điểm của DE với AB và AC
Tính số đo các góc AIC và AKB ?
Bài 5: (1 điểm)
Cho x = 2005 Tính giá trị của biểu thức:
1 2006 2006
2006 2006
x
Đề số 25:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)
Câu 1 ( 2đ) Cho:
d
c c
b b
c b
b b a
c c b
a
+
= +
Câu 5 (3đ) Cho ABC vuông cân tại A, trung tuyến AM E ∈ BC,
BH,CK ⊥ AE, (H,K ∈ AE) Chứng minh MHK vuông cân
Trang 35Đề số 26:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút) Câu 1: (2đ)
Câu 2 (2đ)
Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau
a, tây đạt giải 1, Bắc đạt giải 2
b, Tây đạt giải 2, Đông đạt giải 3
c, Nam đạt giải 2, Đông đạt giải 4
Em hãy xác định thứ tự đúng của giải cho các bạn
Đề số 27:
đề thi học sinh giỏi
(Thời gian làm bài 120 phút)