T×m hä nguyªn hµm cña hµm sè gx.b.
Trang 1Loại 1: Tích phân hàm số đa thức Bài 1: I =
1
3 4 5 0
∫ I =
1
2 3 0
∫ I =
2 1 0
I =1 3
0
xdx(2x 1)+
∫ I =
3 2
2 1
1dx(1 x) x+
2 0
xdx
∫ I =
3 3 2 1
xdx
∫ I =1 3
0
4xdx(x +1)
∫ I =1 3
0
3dx
∫ I=2 2 2
0
1dx(4 x )+
−+
Trang 2Loại 3: Tích phân hàm số vô tỉ Bài 1: I =
2 1
0
x
dx(x 1) x 1+ +
2 1
x 1dxx
∫ I =
7 3 3 0
x 1
dx3x 1
++
∫
I =2
3 0
x 1
dx3x 2
++
∫ I =
1
3 3
4 3
3
dxx
−
∫ I = 2 2
2 2
1dx
x 1 x+
∫
I =2 3
2 5
1dx
dx
++
∫ I = 7 3
0
xdx
1 x+
∫
I =
2 3 2
2 0
xdx
1 x−
∫ I =
2
2 2
3
1dx
∫ I =
3 2
2 1
2
1dx
3
1dx
∫ I =2
3 1
1dx
x 1 x+
∫ I =
2 1
3 0
Trang 3I =
1
2 0
1dx
4 x−
∫ I =
3
2 1
1
dx4x x−
2 0
xdx
1 x−
∫ I =
2 1
2 2 2
1 x
dxx
−
∫ I =
2 1
2 0
4 x dx+
∫ I =
3 2 2
1dx
∫ I =
0 2 1
dxx
+
∫
I =
2 1
2 0
2 0
x x
dxx
−
∫ I =
1 2
2 1
2
1
dx(3 2x) 5 12x 4x
1 3 1 2
xdx
Trang 4π x dx I =∫4
0 6
cos1
π
∫
I =4
3 0
1dxcos x
π
π∫ I = ∫3
4
2 2
2
cos2sin1
π
I =3 2
6 0
sin x
dxcos x
Trang 5dxsin x cot gx
π π
3 4
∫ I =
0
2 2
sin 2x
dx(2 sin x)
2 0
sin x
dx(sin x 3)
π π
π
π
−
−+
∫ I =2
0
cos x
dxsin x cos x 1
∫ I =2
0
sin 2x sin x
dxcos3x 1
π
++
∫
I =4 3
2 0
sin x
dxcos x
++
π
++
0
sin x.cos x
dxcos x 1
π
+
∫
Trang 6I =2
6
1 sin 2x cos 2x
dxcos x sin x
2 sin x
π+
0
sin 2x
dxsin x 2cos x
tan x
dxcos x cos x 1
π
3 3 2
3
sin x sin x
cot gx dxsin x
π π
2 tgx
π+
sin xdx
π
∫ I =
1 0
Trang 7B i 1: à I =1 x
0
1dx
∫ I =2 x
1
1dx
1 e− −
∫ I =2 x2x
0
edx
x 0
1dx
∫ I =1 2x
0
1dx
e
dx(e +1)
e −1
∫ I =
1 4x 2x 2
2x 0
dx
1 e
++
1dx
∫ I =1 2x x
0
1dx
∫
I =
x 2 1
2x 0
(1 e )
dx
1 e
++
∫ I =
1
1 x 3 a
edxx
∫
I = 1 2x
1
1dx
x e
dx(x 2)+
ln x
dxx(ln x 1)+
∫ I =
e 1
sin(ln x)
dxx
∫ I =
e 1
ln x 2 ln x
dxx
+
∫
Trang 8I =e
1
1 3ln x ln x
dxx
+
2
e e
ln xdxx
∫ I =1 2
2 0
1
.ln xdxx
e
ln x
dx(x 1)+
∫ I =
1 2 0
+
∫ I=
e
1 e
xdx
1 2
−∫ +
Trang 9B i 4: à I =
2 1
x.sin coscos A-02 I = x(e x x )dx.
x B-03 =∫ −
1
2 x
x
e
dxeI
02 T59 = 4
1 cos 20
x dx x
e
I x B-04 I = ∫3 +
1 3
x x
dx A-04 dx
x
xx
I=∫2 −++
4
41
2 1
π
= +
ln 2 3 1
dx x x
x I
I cos D – 07: I = dx
x
x x
0
)1(
0 3 4 sin cos 2
2 sin
π
dx x x
x I
Trang 10A1- 08 : = ∫ +
3
2 /
x dx x
x x dx x
ln x
dx x
3 ln ( 1)
x dx x
+ +
+ + +
1
ln (2 ln )
e
x dx
1
3 (2 ) ln
x x dx
x
π
∫+
(C§SP Kon Tum 2004) T 17 = 1
10
dx x e
Trang 11∫+ +
− (C§ KTKT CÇn Th¬ A2005) T31 =
ln21
e x dx x
x
+
∫+
xdx x
∫+
(C§ SP Sãc Tr¨ng 2005)T 35 = 3 .sin2
2sin 2 cos0
x dx x
Trang 12(C§ SP Qu¶ng B×nh 2005) T 46 =
21
23
0 ( 1)
dx x
+
∫+ (C§ SP Hµ TÜnh AB2002) T69 =
∫ (C§ KTKT Th¸i B×nh 2002) T75 =3
2 2 10
∫+ +
(C§ SP KT Vinh 2002) T76 = 2 4cos 3sin 1
x
+
∫+ (C§ GTVT 2003) T79 =
Trang 13ln(1 )1
x dx x
++
∫
(C§ SP T©y Ninh 2003)
a TÝnh tÝch ph©n: T89=
1cos(ln )
t
x x dx
∫
Trang 14sin cos
π
=∫
IV/ Các đề thi ĐH trước năm 2001
1/ (§H Quèc Gia Hµ Néi & HV Ng©n Hµng A2001- 2002)
2/ (§H Quèc Gia Hµ Néi & HV Ng©n Hµng D2001 - 2002)
T×m hä nguyªn hµm: 93 tan( )cot( )
1 sinln
Trang 16tr-21/ (§H Y Hµ Néi 2001- 2002) a
3 2 117
∫
0
sinsin 3 cos
xdx I
xdx J
3 2
cos 2cos 3 sin
x
=+
∫
Trang 1731/ (§H Quèc Gia Hµ Néi (khèiD) HV Ng©n Hµng D2000- 2001)
135
cos cos
4
dx T
x x
Trang 18J =∫x −x dx, n = 0, 1,2,
b TÝnh I n+1 theo I vµ t×m n lim n 1
I I
f = ∫π f x dx= 51/ (§H LuËt, X©y Dùng Hµ Néi 00- 01)
Trang 19a TÝnh: 1 3
0
31
dx x
∫ b (Ph©n ban) TÝnh:sin 3
π π
55/ (§H SP Vinh D, G, M00- 01)
2 0
Trang 20a T×m hä nguyªn hµm cña hµm sè g(x).
b TÝnh tÝch ph©n: 2
2
( )1
x
g x dx e
xdx I
xdx J
−∫ +
Trang 2167/ (§H §µ L¹t A, B99- 00) a
1
2 ln2
dx x
1 4 6 0
11
Trang 22x
dx x
++
dx
x + x+
∫ b (CB) TÝnh:1
+
∫ b (CB) TÝnh:1
11
x dx x
++
1
x
dx x
++
Trang 23x
π π
41
x
dx x
3 2