1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TỔNG HỢP TÍCH PHÂN LUYỆN THI ĐẠI HỌC

20 1K 41
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 1,48 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tong hop tich phan luyen thi dai hoc

Trang 1

*BÀI TẬP LUYỆN THI:

1,

3

0

I= ∫x (1 x) dx−

3,

1

2 3 0

I= ∫(1 2x)(1 3x 3x ) dx+ + +

5,

1

0

2x 9

x 3

+

=

+

7,

2

1

0

x 3x 2

x 3

=

+

9,

2

2

1

5

x 6x 9

=

11,

2 1

2 0

x

4 x

=

13,

2

2

1

1

x 2x 2

=

15,

1

2

0

4x 1

x 5x 6

+

=

17,

2

2

0

x

x 1

=

19,

3 2

2

1

3x

x 2x 1

=

21,

1

2

1

(x 1) (+ +

= ∫

23,

2

2

x 1

I ( ) dx

x 2

=

+

2,

1

0

I =∫x (x −1) dx

4,

1

0

I =∫ x (1 x ) dx−

6,

3

0

x 1

2x 3

+

=

8,

1 2 0

3

x 4x 5

=

10,

1

2 0

x

4 x

=

12,

3 3 2 1

x

x 16

=

14,

2 2

2 1

x

x 7x 12

=

16,

1 3 2 1

1

9x 6x 5

=

18,

2 3 2 0

3x 2

x 1

+

=

+

20,

3 2 3

1

x 3

=

+

22,

1 3 0

3

x 1

=

+

24,

2 1 3

2 x 5

I = x + + dx

+

CHUYÊN ĐỀ NÂNG CAO

Giải Tích 12

CHUYÊN ĐỀ NÂNG CAO

Giải Tích 12

* TÍCH PHÂN LUYỆN THI ĐẠI HỌC *

Trang 2

25,

1

2 0

x 2x 10x 1

x 2x 9

=

27,

1

2 5

1

2x 8x 26

=

29,

1

3 0

x

(2x 1)

=

+

31,

2

3

2

1

1

x

x d x

=

+

33,

5

3

4

2 2

3x x

1

x 2 5x 6

+

=

35,

2 1

4 0

(x 1)

(2 x 1)

=

+

37,

1

2

5x

(x 4)

=

+

39,

2

10 2 1

1

x(1 x )

=

+

1

(1 )

=

+

43,

2 2

4 1

1 x

1 x

+

=

+

45,

2 2

4 1

1 x

1 x

=

+

47,

7 3

2

x

1 x 2x

=

49,

3

2 3

4

0

x

x 1

=

51,

1

3

0

4x

(x 1)

=

+

53,

3 1

0

x

(x 1)

=

+

26,

1

2 0

x 3

(x 1)(x 3x 2)

=

28,

4 2 1

1

x (x 1)

=

+

30,

1

0

4x 1

x 2x x 2

=

32,

2

1

x

=

+

34,

1

3 0

x

(x 1)

=

+

36,

99 1

101 0

(7x 1)

(2x 1)

=

+

7 1

5 0

(1 x ) x

= +

40,

4 3

4 1

1

x(1 x )

=

+

42,

7 2

7 1

x(1

x

x )

1

=

+

2001 2

1002 1

(1 )

x x

= +

46,

4 1 6 0

x 1

x 1

+

=

+

1 4 0

x I

x dx

=

50,

2

1 5

2 2

4 1

x 1

x x 1

+

+

=

52,

1

0

1

(x 4x 3)

=

54,

2

2 2 0

1

(4 x )

=

+

Trang 3

55,

4

1

6

0

x 1

x 1

=

+

5 2

5 1

1 x

x(1 x )

=

+

1,

1

0

x 1 x

I= ∫ − dx

3,

1

0

x 1 x

I= ∫ − dx

0

x 1 x

I= ∫ + dx

7,

2

0

I= ∫x (x +4) dx

9,

7

3

3

0

x 1

dx 3x 1

+

= ∫

11,

2

3 1

1 dx

x 1 x

I=

+

13,

2 3

2 5

1

x x 4

=

+

15,

2

2 0

x dx

I

1 x−

= ∫

17,

2

2 2

3

1 dx

x x 1

I

= ∫

19,

3 7

0

x d

1 x+

= ∫

21,

1

0

x dx 2x 1

I

+

= ∫

23,

1

2 0

1 x d

I= ∫ − x

25,

3

1

1

x 4 x

=

2,

9 3 1

x 1 x

I =∫ − dx

4,

1

0

I=∫x 1 x dx+

6,

1

0

x 1 x

I =∫ + dx

8,

2

3 2 0

(x 3) x 6x 8 d

I=∫ − − + x

10,

2 1

3 0

3x

dx

x 2

I

+

=∫

12,

1

0

1 dx

3 2x

I

=∫

14,

4

2 2

1

dx

x 16 x

I

=∫

16,

2 3 0

x 1

3x 2

+

=

+

18,

4

2 7

1

x 9 x

=

+

20,

6

2

2 3

1

dx

x x 9

I

= ∫

22,

3 2 0

x 2x

x 1

+

=

+

24,

3 8

1

x 1

x

+

=∫

26,

1

2 3

(1 x )

I =∫ − dx

Trang 4

27,

1

2 0

1

4 x

=

29,

2

2 2

2 0

x

1 x

=

31,

1

2

0

x 1

I= ∫ + dx

33,

2

2 1

I 4x x 5 dx

= ∫

35,

2

3

0

x 1

x x

1

+ +

= ∫

37,

2 4

4 3

3

d x

I= x −4 x

39,

4

1

2

dx

x 5 4

I

− + +

= ∫

41,

2

0

x

2 x 2 x

=

43,

2

1

x

1 x 1

=

45,

1

0

3

x 9 x

=

+ −

47,

1

3 3

1

x 4 (x 4)

=

49,

6

4

x 4 1

dx

x 2 x

I

2

= ∫

51,

2 2

2 2

x 1

dx

x x 1

I −

+ +

= ∫

53,

1

3 1

2

x dx

x 1

I

+

= ∫

55,

0

2 1

1

dx

x 2

I

x 9

= ∫

28,

3 2

2 1

2

1 dx

I

x 1 x−

= ∫

30,

2

1

x 4 x d

= ∫

32,

2

2 0

I =∫ 4 x dx+

34,

1

2 0

3x 6x 1dx

I=∫ − + +

36,

2 1

0

x

(x 1) x 1

=

38,

3 2 2

1

x 1

=

40,

1

0

1

dx

x 1 x

I

+ +

=∫

42,

7

2

1

dx

2 x 1

I

+ +

=∫

44,

3 1

2 0

x

x 1 x

=

46,

1

2 1

1

1 x 1 x

=

2 1

x 1

dx x

I = +

50,

1 2

2 1

2

1

dx (3 2x) 5 12x

I

4x

= ∫

52,

2 1 2 0

x x

4

+

=∫

54,

2 4 1

x x

dx x

I = −

56,

3

2 1

1

dx 4x x

I

=∫

Trang 5

57,

2

2 2

2x 5

dx

x 4x

I

13

= ∫

59,

2

2 1

x

dx 3x 9x 1

I

= ∫

61,

4

0

2x 1

dx

1 2x

I

1

+

= ∫

63,

6

2

1

dx 2x 1 4x

I

1

= ∫

65,

2 5

1

x 1

dx

x 3x 1

+

= ∫

67,

2

3

0

2x x 1

dx x

I

1

+ − +

= ∫

69,

4

I

(1 1 2x

x 1

x ) d

=

+

71,

2

2 0

2 3x x

dx x

x

I

x 1

− +

= ∫

73,

1

2 1

1

dx

1 x 1 x

I

− + + +

= ∫

75,

1 3

4 1

3

x I

x

(x )

dx

= ∫

77,

2

27

3 1

I x 2 dx

x+ x

=

81,

1

3

0

1

dx ) 1

I

(1 x x

=

83,

4

2 2

2 3

x

dx 1

(x ) x 1

x

I

= ∫

85,

2 1

6 0

x

dx

4 x

I

= ∫

58,

2 1

2 2

2

1 x

dx x

I = −

2

2 5

2

( ) 4 dx

= ∫

62,

2 1

0

x x

dx

1 x x

+

=∫

64,

1

0

1 x

dx

1 x

+

=∫

66,

3

0

x 3

dx

3 x 1

I

x 3

− + + +

=∫

68,

2 1

0

x

dx (x 1) x

2

1

I

= ∫

70,

1

3 0

2

(x 1) 2x x

I= ∫ − −x d

72,

8 2 3

x 1

dx

x 1

+

= ∫

74,

2

3 2 3 0

I

x

x dx 4

=

+

76,

2

2 5

2 2

x

dx ( 1) x 5

I

x + +

= ∫

78,

1 2 0

1

x

x x

1

+ +

=∫

=

82,

2 2

4 1

x 2015x

d

x I

= ∫

1

(3 4 )

d

x

I = − −

86,

2 1

2 0

x

dx

3 2 x

I

x

= ∫

Trang 6

Dạng 3: Tích phân các hàm số lượng giác

4

I 3tan x dx

π

π

= ∫

6

(2cot x

π

0

2

I sin x.cos x xd

π

= ∫

0

2

I (2cos x 3sin x)dx

π

0

I cos2x(sin x cos x)dx

π

11, 2

0

I sin x.sin 2x.sin 3xdx

π

= ∫

0

cos x.cos 4x dx

I

π

= ∫

0

sin 2x(1 sin x) dx

I

π

+

= ∫

2

cos x cos x cos

π

π

= ∫

4

tan xdx

I

π

π

= ∫

0

tan x dx

I

π

= ∫

0

I sin x dx

π

= ∫

0

cos x dx I

π

6,

4

6

I cot 2 x dx

π π

= ∫

6

2

tan x cotx

π

π

= ∫

6

tan x cot x

π

0

1 cos x sin x.cos xd

π

= ∫

14, 3

0

sin x.tan xdx I

π

= ∫

0

sin x cos x(1 cos x)

π

+

= ∫

0

cos x sin xdx I

π

= ∫

20,

4 3

6

cot x dx I

π π

= ∫

22, 3

2 4

tan x

dx cos x 1 cos x I

π

= ∫

Trang 7

23, 2 4

4

1

sin x

π

π

= ∫

25, 3

0

1

dx cos x

I

π

= ∫

27, 4

6 0

1

cos x

π

= ∫

29, 4

3 0

1

dx cos x

I

π

= ∫

0

4sin x

dx

1 cosx

I

π

+

= ∫

33, 2

4 0

sin 2x

dx

1 cos x

I

π

+

= ∫

35, 2

0

sin 2x.cos x

dx 1

I

cos x

π

+

= ∫

37, 2

0

sin 2x sin x

dx 1

I

3cos x

π

+ +

= ∫

0

1 2sin x

dx

1 sin 2x

I

π

+

= ∫

2 0

sin x

dx cos x

I

π

= ∫

0

sin x

dx cos 1

I

x

π

+

= ∫

6

cos 2x

dx

1 cos 2x

I

π

π −

= ∫

0

sin x cos x

dx sin x cos x 1 I

π

= ∫

26, 2

0

sin x cos x cos x

dx sin x 2

I

π

+ +

= ∫

28, 2

0

cos x

dx

2 cos 2x I

π

+

= ∫

30, 6

2 0

cos x

dx

6 5sin x

I

sin x

π

= ∫

32, 2

4

cos x sin x

dx

3 sin 2x I

π π

+ +

= ∫

6

1

dx sin x co

I

t x

π π

= ∫

0

sin x

dx (tan x 1)

I

.cos x

π

+

= ∫

0

sin x

dx cos x I

π

= ∫

40, 2

4 0

sin 2x

dx

1 sin x I

π

+

= ∫

42, 2

0

sin 2x

dx

1 cos x I

π

+

= ∫

2 0

sin x

dx (sin x 3) I

π

+

= ∫

46,

0

2 2

sin 2x

dx (2 sin x)

I

−π +

= ∫

Trang 8

47, 2

6

1 sin 2x cos 2x

dx cos x sin x

I

π

π

+

= ∫

2 0

sin x.cos x

dx co

I

s x 1

π

+

= ∫

51,

3

3

1

dx sin x 9cos x

I

π

π

= ∫

6

1

dx sin x cos x

I

π

π

= ∫

55, 4

0

sin 2x

dx sin x 2cos x

I

π

+

= ∫

0

sin x sin x

d

cos 2x

π

+

= ∫

59, 2

2 0

sin x

dx cos x 3

I

π

+

= ∫

61, 4

0

1 dx

2 tan x

I

π

+

= ∫

63, 2

2 0

cos x

dx cos x 1

I

π

+

= ∫

0

cos x

dx cos x 3c

I

os x 3

π

= ∫

67, 2

3

1

dx sin x 1 cos x

I

π

= ∫

69, 2

0

sin x

dx

1 sin x

I

π

+

= ∫

48,

3 3

6

4sin x

dx

1 cos x I

π

π −

= ∫

50,

3

2 6

1

dx cos x.sin x I

π π

= ∫

52, 2

0

sin 3x

dx cos 1

I

x

π

+

= ∫

54, 3

2 4

tan x

dx cos x cos 1

I

x

π

= ∫

0

tan x 1 ( ) dx tan 1

I

x

π

− +

= ∫

58, 2

0

sin 2x sin x

dx co

I

s3x 1

π

+ +

= ∫

60, 3

2 0

cos x

dx

1 sin x I

π

= ∫

62, 2

0

4cos x 3sin x 1

dx 4sin x 3cos x 5 I

π

= ∫

64,

2

4

0

sin xdx I

π

= ∫

66, 2

0

1 sin x

dx

1 3cos x I

π

+ +

= ∫

2

cos x 1

dx cos x 2 I

π

π

− +

= ∫

70, 2

0

cos x

dx sin x c

I

os x 1

π

= ∫

Trang 9

71, 2

0

cos x

dx

7 cos 2x

I

π

+

= ∫

73,

2

0

sin x

dx x

I= π∫

75, 2

0

1 dx

2 sin x

I

π

+

= ∫

77, 2

0

1 dx

2 cos x

I

π

= ∫

3

cos x

dx (1 cos x)

I

π

π −

= ∫

81,

2 4

3

2

cos x I

c

sin x 1

d

os x x

π

π

= ∫

6

1

2 sin x sin dx

π

π

85,

2

0

1 sin x

I= ∫π + dx

2

I πsin x.(2 1 cos2x )dx

π

89, 4

0

I

x cos

sin 4x

dx

sin x

π

=

+

91,

3

1

dx

2 3 sin x

I

cos x

π

= ∫

0

1 3 sin 2x 2 d

π

= ∫

72, 2

0

cos x

dx cos x 1 I

π

+

= ∫

74, 2

0

cos x

dx

2 cos x I

π

= ∫

0

cos x

dx cos 1

I

x

π

+

= ∫

6 0

sin x

dx cos x I

π

= ∫

80, 2

0

1

dx 2cos x si

I

n x 3

π

= ∫

82, 3

8

cot x tan x 2tan2x

dx sin 4x

I

π π

= ∫

84, 6

0

1

dx 2sin 3

I

x

π

= ∫

0

I (cos x 1)cos xdx

π

0

cos x sin 2x 3 8

dx sinx co

I

s x

π

= ∫

90, 2

3 0

sin x

dx (sinx 3

I

cos x)

π

+

= ∫

92, 6

0

1

dx sinx 3 cos x I

π

+

= ∫

94, 4

0

cos x sin x

dx

3 sin 2x I

π

= ∫

Trang 10

95,

2

3

0

sin x

dx cos x sin

I

x 3

π

+

= ∫

97, 6

0

tan(x )

4 dx cos 2x

I

π −π

= ∫

99,

2

4

0

tan x

dx cosx

I

cos x 1

π

+

= ∫

3sin x 4cos x

dx 3sin

I

x 4cos x

π

+

+

= ∫

4

sin(x )

4 dx 2sin

I

x cos x 3

π

π

π +

= ∫

3

cos x

dx (1 cos x)

I

π

π −

= ∫

96,

2

2

I

cos x 4sin x

sin 2x

dx

π

=

+

98,

2 4

0

I

cos

sin x

dx 5sin x x 2cos x

π

=

+

0

tan

dx cos 2x

x I

π

= ∫

3 0

cos 2x

dx (cos x si

I

n x 3)

π

= ∫

4

I

x.cos

1

dx

sin x

π π

= ∫

106,

3

6

cot x

dx sin x.sin(

I

x ) 4

π

= ∫

1,

x

ln 2

x 0

1 e

1 e

=

+

3,

2x

1

x

0

e

dx

e 1

I −−

+

= ∫

5,

ln 3

x 0

1 d

e +1

= ∫

7,

2

x 1

x

1 e

I 1− d

= ∫

9,

2x

2

x

0

e

dx

e 1

I

+

= ∫

11,

x 1

x

0

e

e 1

=

+

13,

1

3x 1

0

I= ∫e + dx

2,

ln 2 x 0

e 1dx

I = ∫ −

4,

1 x 0

1 dx

e 4

I

+

=∫

6,

x

ln 3

0

e

dx (e 1)

I

+

= ∫

8,

1

x 0

1

3 e

=

+

10,

1

0

1

e e

=

+

12,

x 2 1

2x 0

(1 e )

1 e

+

= +

14,

4 x 1

I=∫e dx

Trang 11

15,

2x

ln 5

x

ln 2

e dx

e 1

I

= ∫

17,

x 1

0

e

e e−

=

+

19,

x

ln 3

0

e

(e 1) e 1

=

21, 4 tan x 2

2 0

e

dx cos x

π

= ∫

23,

2

e

2 e

1 1

ln x

ln x

25,

e

1

ln x 2 ln x

x

+

= ∫

27,

e

2 1

ln x

x(ln x 1)

=

+

29,

2

e

1

ln x

ln x

= ∫

31,

2

2 0

I= ∫ln( 1 x+ −x)dx

33,

3ln 2

x

1

e +

= ∫

35,

e

1

3 2ln x

x 1 2ln x

=

+

37,

5

2

ln( x 1 1)

x 1 x 1

− +

=

39,

x x

2

1

2 2

4 4 2

=

41, 2

0

I sin x.ln(1 cos x)dx

π

43, I 4ln(1 tan x)dx

π

16,

1

2

2x 0

3e e

1 e

+

=

+

18,

1

2x 1

1

3 e

= +

20,

e

1

1 3ln x ln x

x

+

=∫

22, 2 sin x2

4

I e sin 2x dx

π π

= ∫

24,

3 2 2

I =∫ln(x −x)dx

26,

e 2 1

I=∫ln xdx

28,

2

e

e

ln x

x

= ∫

30,

2 1

I ln(x x 1) dx

= ∫  + + 

0

I e sin x cos xdx

π

= ∫

34,

ln 3

l

x

n

2

2

e

e 1 e 2

=

36,

3 3 e

1

ln x

x 1 ln x

=

+

38,

2 3x

ln 3

0

x

e

e 4e

e

3 1

2 −

=

− +

40,

x 1

0

6

9 3.6 2.4

=

42, 3

0

I sin x.ln(cos x)dx

π

= ∫

1

Trang 12

Dạng 5: Tích phân từng phần

1,

e

2

1

I= ∫ln xdx

3,

0

I= π∫x sin xdx

5,

e

1

I= ∫(1 x)ln x dx+

7,

e

2

1

I= ∫x ln x dx

9,

e

1

I= ∫x(2 ln x)dx−

0

I e sin xdx

π

= ∫

13,

3

2

0

I= ∫x ln(x 1)dx+

15,

2

4

0

I x sin x dx

π

= ∫

0

I x.tan xdx

π

= ∫

19,

1

2 2x 0

I= ∫(1 x) e dx+

21,

2

2

1

1

I x ln(1 )dx

x

23,

e

2 1

e

ln x

(x 1)

=

+

25,

1

2

0

1 x

I x.ln dx

1 x

+

=

27,

2 x

1

2 0

x e

(x 2)

=

+

2,

3 2 2

I =∫ln(x −x)dx

0

I=π∫e sin xdx

1

3 x 0

I =∫x e dx

0

I=π∫ x sin x.cos xdx

10,

2 2 1

I =∫(x +x)ln x dx

0

I e sin 4x dx

π

= ∫

14,

4

2 1

I=∫(x 1) ln x dx−

16,

2

4

0

I x cos x dx

π

= ∫

18, 4

0

x

1 cos 2x

π

= +

0

I =π∫x cos xdx

22,

0 2x 3 1

I x(e x 1)dx

24,

2 e

1

x 1

I ln xdx

x

+

26,

3

2 6

ln(sin x)

cos x

π π

= ∫

28,

2

1

I =∫cos(ln x)dx

Trang 13

29, 2 sin x

0

I e sin 2xdx

π

= ∫

31, e

1

I cos(ln x)dx

π

= ∫

33,

1

1 x

3

a

e

I dx

x

= ∫

35,

1

2

0

1 x

I x ln dx

1 x

+

=

37,

8

3

lnx

x 1

=

+

0

1 sin x

1 cosx

π

+

=

+

41,

1

3x 1

0

I= ∫e + dx

0

I e sin x cos x dx

π

= ∫

32,

2 5 1

ln x

x

=∫

34,

2

3

I cos x.ln(1 cos x)dx

π π

36,

2

3 2

1

ln( 1)

I x dx

x

+

=∫

38,

4

0

2

I=∫ln( x + −9 x)dx

40,

2

1x ln(x 1 )

1

x x

=

+

42,

2 2

1

0

x 1dx

=

+

1,

4

1

x 1

x

1 2

=

+

3,

2 2x

cos x

e 1

π

−π

=

+

5,

1

2 1

I ln(x x 1)dx

1

1

2 x

I ln( )dx

2 x

x

=

+

9,

1

1

1

(x 1)(4 1)

=

11, I 2 cosx ln(x x2 1)dx

π

2,

1

1

1

(e 1)(x 1)

=

4,

2 x

sin x

3 1

π

−π

=

+

6,

1

2 1

I ln( x a x)dx

8,

4 1

sinx x

1 x

+

=

+

10,

3

3

1

(e 1)(x 3)

=

12, 4 sin x

π

= ∫

Trang 14

13, 2

3 3

x

I ( 1)ln( )dx

x x

π

−π

π −

π +

0

x sin x

1 sin x

π

=

+

0

I= π∫x sinxcos xdx

19, 2

0

sin x

sin x cos x

π

=

+

21, 2

3 0

4sin x

(sin x cos x)

π

=

+

0

I ( cos x sin x )dx

π

25, 2

0

sin x

cos x sin x

π

=

+

0

3cos x

sin x cos x

π

=

+

29, 4

3 0

2cos 2x

(sin 2x cos2x)

π

=

+

0

4sin 4x

sin 4x cos 4x

π

=

+

0

cos x sin x

sin x cos x

π

=

+

35,

2

3

3

I x sinx dx

π

π

= ∫

0

x sin x

1 cos x

π

= +

16,

3 2 0

x sin x

cos x

π

=∫

18,

4 2 0

x tan x

4cos x

π

=∫

0

cos x

cos x sin x

π

=

+

22, 2

3 0

5sin x 4cosx

(sin x cos x)

π

=

+

0

I (cos x sin x)dx

π

0

14

I (cos x sin x)dx

π

0

sin x

sin x cos x

π

=

+

6

0

sin 3x

sin 3x cos 3x

π

=

+

32,

2

x 1 0

1 x 3 x

1 2 −

=

+

2 0

1

I tan (cosx) dx

cos (sinx)

π

36, 4

0

I ln(1 tan x)dx

π

Trang 15

(*) Tổng hợp Tích phân- Các Bài toán thi:

1,

2

1

I x 2x x 2 dx

3,

5

3

I ( x 2 x 2 )dx

5,

1

2

2

0

4x 1

x 3x 2

=

0

sin 2 x sin x

1 3cosx

π

+

=

+

0

sin 2x.cosx

1 cos x

π

=

+

11,

3

1

ln x

x ln x 1

=

+

13,

10

5

1

x 2 x 1

=

15,

4

0

2x 1

1 2x 1

+

=

0

tan x

cos 2x

π

= ∫ (A-2008)

19,

2

3

1

l x

x

n

I= ∫ dx (D-2008)

0

2

I (cos x 1)cos xdx

π

23,

3

3 ln x

I

x 1)+ dx

+

= ∫ (B-2009)

25,

1

x 2

0

1 2e

x + + x

=

+

2,

0

I= π∫ cos x sin xdx

4,

2

0

I= ∫π 1 sin xdx+

6,

e

1 e

I= ∫ ln x dx

0

I sin x.tanxdx

π

0

I (tanx e cosx)dx

π

12,

6

2

1

2x 1 4x 1

=

14,

2

2

sin 2x

cos x 4sin x

π

=

+

16,

ln 5

ln 3

1

e 2e− 3

=

18,

1

0

2x

I= ∫(x 2)e dx− (D-2006)

e 3 1

I= ∫x ln xdx (D-2007)

0

sin(x )

4

sin 2 x 2(1 sin x cos x)

=

24,

3 x 1

1

e 1

=

(D-2009)

26,

e

ln x

x(2 l x)n

=

+

Trang 16

27,

e

1

2

I (2x )ln xdx

x

29,

31 x sin x

cos x

π

+

= ∫ (B-2011)

3

1

1 ln(x 1)

d x

I= + + x

3 1

4

0

x

x x

3 2

=

1

0

I= ∫x 2−x dx (B-2013)

0

e sin x

1 sin 2x

π

=

+

39,

1

1

2 x x

2x e e

1 e

x

=

+

0

(1 sinx)

1 cos x

π

+

+

=

+

3

1

1 x(2ln x 1)

x 1)

x(

+

=

+

45,

1

0

2

1

x 1

x

+

47,

e

1

(x 1)ln x 2

1 x ln x

=

+

49,

2

4

0

sin 4x

5 4sin x cos x cos x

π

=

2

e

1

1

x 4 ln x

53,

1

3 0

1

(x 1+ ) (3x 1)+

= ∫

0

x sin x (x 1)cosx

x sin x cos x

π

+ +

=

+

30,

4

0

4x 1

2x 1 2

=

+ +

32, 4

0

I x(1 sin 2x)dx

π

2

1

2 1

I x ln x x

= ∫ (A-2013)

1

0

2

(x 1) x

1

+

+

= ∫ (D-2013)

38,

x 1

x 0

2

( x)e

x

x

e−

+

=

+

40,

x 1

0

xe

1 (e )

=

+

42, 4

ln(sin x cosx)

cos x

π

+

= ∫

44,

e

1

(x 1)lnx

x ln x 1

=

+

46,

x 1

0

2

(2 9) 3.2 2

=

0

2 1

2

x

2 4

(sin x cos

cos x(sin 2x cos x

x

) )

π

+

=

+

e

1

ln x

ln x dx

x 1 x

+

1

2 2

x

x

Trang 17

55, 4

0

tan x.ln(cosx)

cos x

π

= ∫

57, 2

0

sin x cosx 1

sin x 2cos x 3

π

=

59,

2 e

x

x

ln

I= ∫ dx

61,

3

6

cot x

sin x.sin(x )

4

π

π

+

63,

1

1

2

2

x x

x

65,

2

2

1

x 1

x x 1

+

=

67,

2 3

1

2

ln 1

I

x

d

+

= ∫

1

0

I= ∫(e− +x)e dx

71, 2

0

sin 2x

3 4sin x cos 2x

π

=

4

xcos x

sin x

π

π

= ∫

75,

2

3

0

sin x

cos x 3 sin x

π

=

+

77, 4

3 0

3cosx sin x

(sin x 2cos x)

π

=

+

56,

2

1

4 2

4 0

x

x x

2

2 1

=

0

I sin 2x.e dx

π

= ∫

60,

2 3

1

ln(1 ln x)

x

+

= ∫

4

1

cos x(1 e )

π

− π

=

+

0

I cos3x.e dx

π

= ∫

66,

3 4

ln(5 x) x 5 x

= ∫

1

0

1

(2x 1) (x 2)+ +

2

+ =

x

t

70, 2

0

2

1

I= ∫(x 1) 1 2x dx+ −

6 0

cosx cos x

c so x x

π

= ∫

0

x x

I cos( )dx

π

= ∫

2 4

0

1 sin x

cos x

π

+

= ∫

78, 2

0

5sin x 4cosx

1 sin 2x

π

=

+

Trang 18

81, 2

2 2

1

2

0

x (1 x )

= ∫

83,

9

4

ln(x x )

x

= ∫

2

I cosx cosx cos xdx

π

π

87,

2

e

2 1

I= ∫ x ln xdx

89, 3

3 0

x tan( ).sinx(1 sinx)

4 2

cos x

= ∫

91,

5

1

2x 2x 1

2x 1 1

=

− +

93, 2

0

I ln(1 cosx).sin 2 xdx

π

95,

1

4 1

2

2

I= ∫ln(3x +x ) 2− ln x dx

97,

l

2

n

x 0

e

1)

e 3

=

+

99, 2

0

sin 2x

8sin x cos 2x 9

π

=

101,

e

3 1

1

x 7ln x 1

+

2 0

tan x

1 ln (cos x)

π

=

x

0

cosx

e (1 sin 2x)

π

=

+

82,

1 2

0

1 x

I x ln dx

1 x

+

=

0

sin 2x

1 cos x

π

= +

2

x cos x

4 sin x

π

π

+

=

88,

2

3

1

x

x x 1 x

=

90,

3

3

x

1 (1 x ) x

=

92,

10

5

(x 2) x 1

x 2

=

94, 2

3 0

2sin x cosx

(sin x cos x)

π

+

=

+

96, 4

xcos 2x

(1 sin 2x)

π

=

+

98,

3

cos x cosx sinx

1 cos x

+

100,

(xsi n x c

x osx)

π

=

+

102,

e

1

x (x 2)ln x

x(1 ln x)

+ +

=

+

2 3

3 3

x (x sin x)sin x

sin x sin x

π π

+ +

=

+

106, 2 x sin x2

1 sin 2x

π

+

= +

Trang 19

107,

2

e

e

1

x ln x.ln ex

= ∫

1

x

ln x ln 1

d x

111,

x

5

x

2

e (3x 2) x 1

e (x 1) x 1

=

113,

x e

x 1

xe 1

x(e ln x)

+

=

+

115,

e

x 1

2 x ln x 1

x

x

dx

= ∫

2 0

x ln(x 1 x )

1 x

=

+

119,

2 1 3

2

3

0

x

x

x

e

1

+

=

+

2

0

I= ∫ x(2 x) ln(4− + +x ) xd

123,

1

2 0

ln(1 x)

x 1

+

=

+

125,

e

0

(1 2x)ln x 3

1 x ln x

=

+

0

sin 2x cos 2x

sin x cos x

π

+

=

+

129,

2

2 0

1

2x 3x 4

=

4 1

3 4 x

x

= ∫

133,

x

ln 6

x 0

e 1

e 3

+

=

+

108,

2

3

e

2

2 xln x x ln 3

x(1 ln x)

x

=

110,

x x e

x 1

ln x e (e ln x)

1 e

=

+

1

0

1 x x

+

0

2 2

(x 1)

x +

=

+

116,

1x ln(x 1 x

x

)

1

+ +

=

+

118,

2 3

e

1

( 1)ln x 2 1

2 x l x

n

=

+

120,

3

0

2 2

x

) 3

9

=

+

122,

3

0

I= ∫ x 1.sin x 1dx+ +

1

ln(x 3) x

I= + dx

126,

2

3 1

x 2ln x

(x 1)

+

=

+

0

I sin 4x ln(1 cos x)dx

π

130,

4

0

x 2

(x 1) 3x 4

+

=

132,

2 5

1

x 1

x 3x 1

+

=

+

134,

ln 2

0

x

e e− 2

=

3

Ngày đăng: 30/12/2013, 16:27

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w