1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI THỬ ĐẠI HỌC NĂM 2013

1 64 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 97,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị hàm số 1.. PHẦN RIÊNG 3,0 điểm Thí sinh chỉ được làm một trong hai phần phần A hoặc phần B A.. Viết phương trình đường thẳng ∆ biết tam giác IABcó di

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO PHÚ YÊN ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 TRƯỜNG THPT PHAN ĐÌNH PHÙNG Môn thi: TOÁN; Khối A, A1, B, D (lần 11)

ĐỀ THI THỬ Thời gian làm bài: 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I (2,0 điểm) Cho hàm số 1

1 2

x y

x

=

− (1)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (1)

2 Chứng minh đường thẳng (d): x – y + m = 0 luôn cắt đồ thị hàm số (1) tại 2 điểm phân biệt A,

B với mọi m Tìm m sao cho ABOA OB uuur uuur + với O là gốc tọa độ

Câu II (2,0 điểm)

2 1

1 2

3 3

2

3 2

3

≥ +

− +

+ +

x x

x x

x x

2sin cos sin cos 2 cos 2 2 sin

x

Câu III (1,0 điểm) Tính tích phân: = ∫1 + + +

dx I

Câu IV (1,0 điểm)

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông tâm O, SA vuông góc với (ABCD) và

2

a

Gọi I là trung điểm SC, M là trung điểm AB, H là hình chiếu vuông góc của I trên CM và

10

10

a

Tính thể tích khối chóp S.ABCD và khoảng cách từ D đến (SCM)

Câu V (1,0 điểm) Giải hệ phương trình:

= +

+

= +

xy y

x

xy y

x

2 5 2

2 1 2

3 3

3 3

II PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)

A Theo chương trình Chuẩn

Câu VI.a (2,0 điểm)

1 Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : x2+ y2 − 4 x + 2 y − 15 = 0 Gọi I là tâm

đường tròn (C ). Đường thẳng ∆ đi qua M ( 1 ; − 3 ) cắt (C ) tại hai điểm A và B Viết phương trình

đường thẳng ∆ biết tam giác IABcó diện tích bằng 8 và cạnh AB là cạnh lớn nhất.

2 Trong không gian tọa độ Oxyz, cho điểm A(-1; 1; 2), B(3; 5; - 2) và mặt phẳng (P) có phương trình

x – 2y + 2z – 4 = 0 Tìm điểm C thuộc mặt phẳng (P) sao cho tam giác ABC vuông cân tại A

Câu VII.a (1,0 điểm)

Lấy ngẫu nhiên một số tự nhiên có 5 chữ số Tính xác suất để số lấy được có dạng: abcba

B Theo chương trình Nâng cao

Câu VI.b (2,0 điểm)

1 Trong mặt phẳng tọa độ Oxy, cho elíp (E) có tiêu điểm thứ nhất (− 3; 0) và đi qua điểm

4 33

(1; )

5

M Hãy xác định toạ độ các đỉnh của (E).

2 Trong không gian tọa độ Oxyz, cho hai điểm A(1;4;2), B(-1; 2; 4) và đường thẳng d:

x− = y+ = z

− Viết phương trình đường thẳng ∆ đi qua trung điểm của AB, cắt d và song song với

(P): x + y – 2z = 0.

Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn điều kiện z = 1 Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: A = + + 1 z 3 1 − z

-Hết -(Nguồn: buigiang)

Ngày đăng: 31/01/2015, 10:00

w