1. Trang chủ
  2. » Giáo án - Bài giảng

SKKN Đại số 7 tìm x

13 525 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 108,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đặc biệt biểu thức về giá trị tuyệt đối của một số, của một biểu thức, cha biết vận dụng biểu thức này vào giải bài tập, cha phân biệt và cha nắm đợc các phơng pháp giải đối với từng dạn

Trang 1

Phần I: Đặt Vấn Đề

1 Lý do chọn đề tài:

Bất kì một môn học nào trong trờng phổ thông cũng có nhiệm vụ là thông qua đặc điểm bộ môn mình phối hợp với cac bộ môn khác với các hoạt động trong nhà trờng góp phần giáo dục toàn diện cho học sinh nhằm đào tạo những con ngời mới có tri thức

Môn toán học có vai trò rất quan trọng là cơ sở chủ yếu của nhiều ngành khoa học, đặc biệt là tin học Sự phát triển của tin học đang là một trong những

động lực chủ yếu làm cho nền kinh tế thế giới chuyển sang một giai đoạn mới

về chất Giai đoạn kinh tế tri thức Ngoài ra môn toán còn có khả năng to lớn giúp học sinh phát triển các năng lực và phẩm chất trí tuệ Do tính chất trừu t -ợng, tính chính xác, t duy suy luận logic Toán học chính là “môn thể thao của trí tuệ” Rèn luyện cho học sinh tính thông minh sáng tạo, làm cơ sở cho việc trau dồi tri thức văn hoá

Trong quá trình dạy học sinh môn toán lớp 7 có phần “ Tìm x” tôi nhận thấy học sinh còn nhiều vớng mắc về phơng pháp giải, quá trình giải thiếu logic và cha chặt chẽ, cha xét hết các trờng hợp xảy ra Lí do là học sinh cha

nắm vững quy tắc đổi dấu, chuyển vế Đặc biệt biểu thức về giá trị tuyệt đối

của một số, của một biểu thức, cha biết vận dụng biểu thức này vào giải bài tập, cha phân biệt và cha nắm đợc các phơng pháp giải đối với từng dạng bài tập Mặt khác phạm vi kiến thức ở lớp 6, 7 cha rộng, học sinh mới bắt đầu làm quen về vấn đề này, nên cha thể đa ra đầy đủ các phơng pháp giải một cách có

hệ thống và phong phú đợc Mặc dù chơng trình sách giáo khoa sắp xếp hệ thống và logic hơn sách cũ rất nhiều, có lợi thế để dạy học sinh về vấn đề này , nhng tôi thấy để giải bài tập về tìm x thì học sinh vẫn còn lúng túng trong việc tìm ra phơng pháp giải và việc kết hợp với điều kiện của biến để xác định giá trị phải tìm là cha chặt chẽ Chính vì vậy, trong khi giảng dạy về vấn đề này tôi nghĩ cần phải làm thế nào để học sinh biết áp dụng định nghĩa tính chất về giá trị tuyệt đối để phân chia đợc các dạng, tìm ra đợc phơng pháp giải đối với từng dạng bài Từ đó học sinh thấy tự tin hơn khi gặp loại bài tập này và có kỹ năng giải chặt chẽ hơn, có ý thức tìm tòi, sử dụng phơng pháp giải nhanh gọn, hợp lí

Chính vì những lí do trên mà tôi chọn và trình bày kinh nghiệm Hớng dẫn học sinh lớp 7 giải dạng toán Tìm x

Phần II: giảI quyết vấn đề

Trang 2

A: khảo sát thực tế

Với học sinh lớp 7 thì việc giải dạng toán “ Tìm x” gặp rất nhiều khó khăn do học sinh cha học qui tắc giải về phơng trình, các phép biến đổi tơng

đ-ơng… Chính vì vậy mà khi gặp dạng toán này học sinh th Chính vì vậy mà khi gặp dạng toán này học sinh thờng ngại, lúng túng không tìm đợc hớng giải và khi giải hay mắc sai lầm Khi cha hớng dẫn học sinh giải bằng cách áp dụng đề tài, học sinh giải thờng vớng mắc nh sau:

Ví dụ 1 : tìm x biết x- 2x +3 = 6 - x

+ Một số HS cha rõ tìm x nh thế nào ? Hoặc khi chuyển vế không đổi dấu

Ví dụ 2: Tìm x biết |x-5| -x = 3

+ Học sinh không biết xét tới điều kiện của x, vẫn xét 2 trờng hợp xảy ra:

x – 5 – x = 3 hoặc 5 – x – x = 3

+Đa về dạng | x – 5| = 3 +x

=> x-5 = x+3 hoặc x- 5 = -(3+x)

và học sinh cha hiểu đợc ở đây 3 + x có chứa biến x

+ Có xét tới điều kiện của x để x – 5  0; x – 5 < 0 nhng đối với mỗi trờng hợp học sinh cha kết hợp với điều kiện của x, hoặc kết hợp cha chặt chẽ

Ví dụ 3: Tìm x biết | 2x – 3| = 5

Học sinh cha nắm đợc rằng ở đây đẳng thức luôn xảy ra (vì 5>0) và có

thể các em đi xét giá trị của biến để 2x – 3  0 hoặc 2x –3 < 0 và giải 2 tr-ờng hợp tơng ứng, cách làm này của học sinh cha nhanh gọn

Khi tôi áp dụng đề tài này vào quá trình hớng dẫn học sinh giải đợc bài, hiểu rất rõ cơ sở của việc giải bài toán đó Còn ở ví dụ 2 các em đã biết lựa chọn ngay cách giải nhanh (và hiểu đợc cơ sở của phơng pháp giải đó là áp dụng tính chất; hai số đối nhau có giá trị tuyệt đối bằng nhau)

Cụ thể :

|2x-3|= 5 ( vì 5 > 0)

=>2x – 3 = 5 hoặc 2x – 3 = -5

Kết quả điều tra khảo sát

Qua khảo sát khi cha áp dụng đề tài tôi khảo sát lớp 7A trờng THCS Thắng Lợi với đề bài:

Tìm x biết:

a) 3x - 2 = 5 ( 2 điểm ) b) 6x - 5x2 = 2 - 5x2 ( 3 điểm ) c) |2x – 5| = 7 ( 3điểm)

Trang 3

d) |5x – 3| - x = 7 ( 2 điểm)

Kết quả đạt đợc nh sau:

Tôi thấy học sinh còn rất lúng túng về phơng pháp giải, cha nắm vững phơng pháp giải đối với từng dạng bài, quá trình giải cha chặt chẽ, cha kết hợp

đợc kết quả tìm ra với điều kiện xảy ra, cha lựa chọn đợc phơng pháp giải nhanh, hợp lí

Kết quả thấp là do học sinh vớng mắc những điều tôi đã nêu ra ( ở phần trên) và phần lớn các em xét cha đợc chặt chẽ ở câu c , d

B: Các bớc thực hiện

I Những kiến thức cơ bản liên quan đến bài toán tìm x

Yêu cầu học sinh nắm vững và ghi nhớ các kiến thức cần thiết để giải bài tập tìm x, một điều khó khăn khi dạy học sinh lớp 7 về vấn đề này đó là học sinh cha đợc học về phơng trình, bất phơng trình, các phép biến đổi tơng đơng, hằng đẳng thức nên có những phơng pháp dễ xây dựng thì cha thể hớng dẫn học sinh đợc, vì thế học sinh cần nắm vững đợc các kiến thức cơ bản sau:

a- Qui tắc bỏ dấu ngoặc, qui tắc chuyển vế.

b- Tìm x trong đẳng thức:

Thực hiện phép tính , chuyển vế … đ a về dạng ax = b => x = đ

a

b

c- Định lí và tính chất về giá trị tuyệt đối.

0 0

|

|

A khi A A khi A A

|A| = |-A|

|A|  0

d- Định lí về dấu nhị thức bậc nhất.

II Những biện pháp tác động giáo dục và giải pháp khoa học tiến hành.

Từ các quy tắc , định nghĩa, tính chất về giá trị tuyệt đối hớng dẫn học sinh phân chia từng dạng bài, phát triển từ dạng cơ bản sang các dạng khác, từ phơng pháp giải dạng cơ bản, dựa vào định nghĩa, tính chất về giá trị tuyệt đối tìm tòi các phơng pháp giải khác đối với mỗi dạng bài, loại bài Biện pháp cụ thể nh sau:

1 Một số dạng cơ bản:

Trang 4

1.1 Dạng cơ bản A(x) = B(x)

1.1.1 Cách tìm phơng pháp giải :

Làm thế nào để tìm ra x ? cần áp dụng kiến thức nào ( sử dụng quy tắc chuyển vế ) ? khi làm cần lu ý điều gì ?( Lu ý khi chuyển vế phải đổi dấu )

1.1.2 Phơng pháp giải

Sử dụng quy tắc chuyển vế chuyển các hạng tử chứa biến x sang vế trái , còn chuyển các hệ số tự do sang vế phải Thực hiện các phép tính thu gọn và tìm x

1.1.3 ví dụ

Tìm x , biết 2x - 3 = 5x + 6

Làm thế nào? Chuyển hạng tử nào sang vế nào ? ( Chuyển 5x từ vế phải sang vế trái và dổi dấu , chuyển -3 từ vế trái sang vế phải và đổi dấu thành +3)

Giải 2x - 3 = 5x + 6

2x - 5x = 6 + 3

- 3x = 9

x = 9 : (-3)

( GV lu ý HS cả cách trình bày )

1.2 Dạng cơ bản |A(x)| =B với B 0

1.2.1 Cách tìm phơng pháp giải:

Đẳng thức có xảy ra không? Vì sao? Nếu đẳng thức xảy ra thì cần áp dụng kiến thức nào để bỏ đợc dấu giá trị tuyệt đối (áp dụng tính chất giá trị tuyêt đối của hai số đối nhau thì bằng nhau)

1.2.2 Phơng pháp giải:

Ta lần lợt xét A(x) = B và A(x) = -B, giải hai trờng hợp

1.2.3 Ví dụ:

Ví dụ 1: Tìm x biết |x- 5| = 3

Đặt câu hỏi bao quát chung cho bài toán:

Đẳng thức có xảy ra không? Vì sao?

(có xảy ra vì |A|  0 , 3 > 0) Cần áp dụng kiến thức nào để giải, để bỏ đợc thì bằng nhau)

Bài giải

Trang 5

|x-5| = 3  x – 5 = 3 ; hoặc x – 5 = -3

+ Xét x - 5 = 3  x = 8

+ Xét x – 5 = -3  x = 2 Vậy x = 8 hoặc x = 2

Từ ví dụ đơn giản, phát triển đa ra các ví dụ khó dần

Ví dụ 2: Tìm x biết: 3|9-2x| -17 = 16

Với bài này tôi đặt câu hỏi: “Làm thế nào để đa đợc về dạng cơ bản đã học?”

Từ đó học sinh phải biến đổi để đa về dạng |9-2x|=11

Bài giải

3|9 - 2x| - 17 = 16  3|9 - 2x| = 33

 |9 - 2x| = 11

 9 - 2x = 11 hoặc 9 – 2x = -11

+ Xét 9 - 2x = 11  2x = -2

x = -1

+ Xét 9 - 2x = -11  2x = 20

 x= 10 Vậy x= -1 hoặc x = 10

1.3 Dạng |A(x)| = B(x) ( trong đó Bx là biểu thức chứa biến x)

1.3.1 Cách tìm phơng pháp giải:

Cũng đặt câu hỏi gợi mở nh trên, học sinh thấy đợc rằng đẳng thức không xảy ra nếu B(x) < 0

 Cần áp dụng kiến thức nào để có thể dựa vào dạng cơ bản trên để suy luận tìm ra cách giải không? Có thể tìm ra mấy cách?

1.3.2 Phơng pháp giải:

Cách 1: ( Dựa vào tính chất)

|A(x) |= B(x)

Với điều kiện B(x) 0 ta có A(x) = B(x) hoặc A(x) = - B(x)( giải 2 trờng hợp với điều kiện B(x) 0)

Cách 2: Dựa vào định nghĩa xét các quá trình của biến của biểu thức chứa

dấu giá trị tuyệt đối để bỏ dấu giá trị tuyệt đối.

Trang 6

|A(x) | = B(x)

+ Xét A(x) 0  x ? Ta có A(x) = B(x) ( giải để tìm x thoả mãn A(x) 0) + Xét A(x) < 0  x? Ta có A(x) = - B(x) ( giải để tìm x thoả mãn A(x) < 0) + Kết luận: x = ?

L

u ý : Qua hai dạng trên tôi cho học sinh phân biệt rõ sự giống nhau (đều chứa

1 dấu giá trị tuyệt đối) và khác nhau ( |A(x)| = m 0 dạng đặc biệt vì m > 0) của 2 dạng.

Nhấn mạnh cho học sinh thấy rõ đợc phơng pháp giải loại đẳng thức chứa 1 dấu giá trị tuyệt đối, đó là đa về dạng |A | = B(Nếu B 0 đó là dạng

đặc biệt còn Nếu B < 0 thì đẳng thức không xảy ra Nếu B là biểu thức chứa biến là dạng 2 và giải bằng cách 1) hoặc ta đi xét các trờng xảy ra đối với biểu thức trong giá trị tuyệt đối.

1.3.3 Ví dụ:

Ví dụ 1: Tìm x biết: |9-7x| = 5x -3

Cách 1:

Với 5x – 3 ≥ 0  5x x  3

 x  5x 3

Ta có 9 - 7x = 5x - 3 hoặc 9 – 7x = - (5x-3)

+ Nếu 9 - 7x = 5x - 3

 12x = 12

 x = 1(thoả mãn) + Nếu 9-7x = -(5x-3)

 2x = 6

 x = 3(thoả mãn) Vậy x= 1 hoặc x= 3

Cách 2:

+ Xét 9 - 7x  0  7x ≤ 9

 x ≤ 79

Ta có 9 – 7x = 5x – 3  x = 1(thoả mãn)

+ Xét 9- 7x < 0  7x > 9

Trang 7

 x > 79

Ta có - 9 + 7x = 5x – 3  x = 3(thoả mãn) Vậy x = 1 hoặc x = 3

Ví dụ 2: Tìm x biết |x- 5| - x = 3

Cách 1: | x – 5| - x = 3

 |x – 5| = 3 + x

Với 3 + x  0  x  - 3

Ta có x- 5 = 3 + x hoặc x – 5 = -(3 + x)

+ Nếu x – 5 = 3 + x  0x = 8(loại)

+ Nếu x – 5 = -3 – x  2x = 2  x = 1 thoả mãn

Vậy x = 1

Cách 2: | x – 5| - x = 3

+ Xét x – 5  0  x  5

Ta có x – 5 – x = 3  0x = 8 (loại)

+Xét x – 5 < 0  x < 5

Ta có –x + 5 – x = 3  - 2x = - 2

 x = 1 thoả mãn Vậy x = 1

1.4 Dạng 4: |A(x)| + |B(x)| =0

1.4.1 Cách tìm phơng pháp giải:

Với dạng này tôi yêu cầu học sinh nhắc lại kiến thức về đặc điểm của giá trị tuyệt đối của một số (giá trị tuyệt đối của một số là một số không âm).Vậy tổng của hai số không âm bằng không khi nào?(cả hai số bằng 0) Vậy ở bài này tổng trên bằng 0 khi nào? (A(x) = 0 và B(x) =0) Từ đó ta tìm x thoả mãn hai điều kiện: A(x) = 0 và B(x) = 0

1.4.2 Phơng pháp giải:

Ta tìm x thoả mãn hai điều kiện A(x) = 0 và B(x) = 0

1.4.3 Ví dụ:

Tìm x biết:

a) |x+3| + |x2+x| = 0 b)|x2-3x| + |(x+1)(x-3)| = 0

Trang 8

Bài giải:

a) |x + 1| + |x2 + x| = 0

 |x + 1| = 0 và |x2 + x| = 0

*) Xét |x + 1| = 0  x + 1 = 0

 x = -1 (*)

*) Xét |x2 + x| = 0  x2 + x = 0

x(x + 1) = 0

 x = 0 hoặc x+ 1 = 0

 x = 0 hoặc x = -1 (**)

Từ (*) và (**) suy ra x = -1

b) |x2 -3x| + |(x + 1)(x - 3)| = 0

 |x2 - 3x| = 0 và |(x + 1)(x - 3)| = 0

 x2 - 3x = 0 và (x + 1)(x - 3)| = 0

*) Xét x2- 3x = 0  x(x - 3) = 0

 x = 0 hoặc x = 3 (*)

*) Xét (x + 1)(x - 3) = 0  x + 1 = 0 hoặc x - 3 = 0

 x= -1 hoặc x = 3 (**)

Từ (*) và (**) ta đợc x = 3

Lu ý:

ở dạng này tôi lu ý cho học sinh phải khi kết luận giá trị tìm đợc thì giá trị

đó phải thoả mãn cả hai đẳng thức |A(x)| = 0 và |B(x)| = 0

2 Dạng mở rộng:

2.1 Dạng chứa biến x mũ lớn hơn hoặc bằng 2

2.1.1 Cách tìm phơng pháp giải :

HS khi gặp phải các biểu thức chứa mũ ở biến thì bỡ ngỡ cha biết làm thế nào ?

2.1.2 Phơng pháp giải :

Sử dụng các quy tắc biến đổi thông thờng , sau khi biến đổi các biến của

x chứa mũ sẽ bị triệt tiêu

2.1.3 ví dụ

Tìm x biết 2x - 3x2 = 2 - 3x2

Trang 9

( Ta chỉ cần biến đổi -3x2 từ vế phải sang vế trái thành 3x2 sẽ triệt tiêu với -3x2 ở vế trái )

2.2 Dạng |A(x)| = |B(x)| hay |A(x)| - |B(x)| = 0

2.1.1 Cách tìm phơng pháp giải:

Trớc hết tôi đặt vấn đề để học sinh thấy đợc đây là dạng đặc biệt( vì đẳng thức luôn xảy ra do cả 2 vế đều không âm), từ đó các em tìm tòi hớng giải

Cần áp dụng kiến thức nào về giá trị tuyệt đối để bỏ đợc dấu giá trị tuyệt

đối và cần tìm ra phơng pháp giải ngắn gọn Có hai cách giải: Xét các trờng hợp xảy ra của A(x) và B(x)(dựa theo định nghĩa) và cách giải dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau để suy ra ngay A(x) = B(x); A(x) = -B(x) (vì ở đây cả hai vế đều không âm do |A(x)| ≥ 0 và |B(x)| ≥ 0) Để học sinh lựa chọn ra cách giải nhanh, gọn, hợp lí để các em có ý thức tìm tòi trong giải toán và ghi nhớ đợc

2.1.2 Phơng pháp giải:

Cách 1: Xét các trờng hợp xảy ra của A(x) và B(x) để phá giá trị tuyệt đối Cách 2: Dựa vào tính chất hai số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) = B(x) hoặc A(x) = -B(x)

2.1.3 Ví dụ:

Ví dụ1: Tìm x biết |x + 3| = |5 - x|

|x+3| = |5-x|

8 0

1 8

0

2 2 5x 3

5x 3

x

x x

x x

x

x x

=>x = 1

Vậy x = 1

Ví dụ 2: Tìm x biết: |x-3| + |x+2| =7

B

ớc 1 : Lập bảng xét dấu:

Trớc hết cần xác định nghiệm của nhị thức :

x – 3 = 0  x = 3 ;

x + 2 = 0  x = -2

Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn

Ta có bảng sau:

X -2 3

x – 3 - - 0 +

x + 2 - 0 + +

Trang 10

ớc 2 : Dựa vào bảng xét dấu các trờng hợp xảy ra theo các khoảng giá trị của

biến Khi xét các trơng hợp xảy ra không đợc bỏ qua điều kiện để A  0 mà kết

hợp với điều kiện để A  0 (ví dụ xét khoảng – 2  x  3)

Cụ thể: Dựa vào bảng xét dấu ta có các trờng hợp sau:

*) Nếu x  - 2 ta có x- 3  0 và x  2  0

nên x - 3 3- x và x + 2= -x – 2

Đẳng thức trở thành: 3- x – x –2 = 7

-2x + 1 = 7

-2x = 6

x = -3 ( thoả mãn x-2)

*) Nếu 2  x  3 ta có x - 3= 3 - x và x + 2= x + 2

Đẳng thức trở thành: 3- x + x +2 = 7

0x + 5 = 7 (vô lí)

*) Nếu x  3 đẳng thức trở thành:

x- 3 + x + 2 = 7

2x – 1 = 7

2x = 8

x = 4 (thoả mãn x  3)

Vậy x = -3 ; x = 4

L

u ý : Qua 2 cách giải trên tôi cho học sinh so sánh để thấy đợc lợi thế trong mỗi cách giải ở cách giải 2 thao tác giải sẽ nhanh hơn, dễ dàng xét dấu trong các khoảng giá trị hơn, nhất là đối với các dạng chứa 3; 4 dấu giá trị tuyệt đối (để nên ý thức lựa chọn phơng pháp giải).

Ví dụ3: Tìm x biết:

 x - 1 - 2 x - 2 + 3 x - 3 = 4

Nếu giải bằng cách 1 sẽ phải xét nhiều trờng hợp xảy ra, dài và mất nhiều thời gian Còn giải bằng cách 2 thì nhanh gọn hơn rất nhiều, vì dựa vào bảng xét dấu ta thấy ngay có 4 trờng hợp xảy ra Mặt khác, với cách giải 2 ( lập bảng xét dấu ) xẽ dễ mắc sai sót về dấu trong khi lập bảng, nên khi xét dấu các biểu thức trong dấu giá trị tuyệt đối cần phải hết sức lu ý và tuân theo đúng

qui tắc lập bảng Một điều cần lu ý cho học sinh đó là kết hợp trờng hợp 

Trang 11

trong khi xét các trờng hợp xảy ra để thỏa mãn biểu thức  0 ( tôi đa ra ví dụ cụ thể để khắc phục cho học sinh )

Ví dụ 4 : Tìm x biết  x - 4  +  x - 9  = 5

Lập bảng xét dấu

x - 4 - 0 +  +

x - 9 -  - 0 +

Xét các trờng hợp xảy ra, trong đó với x  9 thì đẳng thức trở thành

x – 4 + x - 9 = 5

x = 9 thỏa mãn x  9

Nh vậy nếu không kết hợp với x = 9 để x – 9 = 0 mà chỉ xét tới x  9 để x

- 9  0 thì xẽ bỏ qua mất giá trị x = 9

Từ những dạng cơ bản đó đa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu, dạng chứa từ 3 dấu giá trị tuyệt đối trở lên

*Xét |4 - x| + |x - 9| = -5 Điều này không xảy ra vì |4 - x| + |x – 9| ≥ 0

Vậy 4 ≤ x ≤ 9

ở ví dụ 3: x - 1 - 2 x - 2 + 3 x - 3 = 4 (1)

*Xét 1 < x ≤ 2: (1)  x – 1 - 2(2 - x) + 3(3 - x) = 4

 x – 1 – 4 + 2x + 9 - 3x = 4

 0x = 0(Thoả mãn với mọi x)

 1 < x ≤ 2

*Xét 2 < x ≤ 3: (1)  x- 1 - 2(x - 2) + 3(3 - x) = 4

 x - 1 - 2x + 4 + 9 -3x = 4

 x = 2( loại)

*Xét x > 3: (1)  x - 1 - 2(x - 2) +3(x - 3) = 4

 x-1-2x+4 +3x-9 = 4

 x=5 (TM) Vậy: 1 ≤ x ≤ 2 và x = 5

Ngày đăng: 10/07/2014, 13:00

w