haimathlx@yahoo.com.vn TRƯỜNG THPT LÊ XOAY ĐỀ THI MÔN: TOÁN – KHTN Thời gian: 180 phút không kể thời gian giao đề Đề thi gồm 01 trang Câu I.. Biết hình vuông ABCD nhận I làm tâm, M th
Trang 1haimathlx@yahoo.com.vn
TRƯỜNG THPT LÊ XOAY
ĐỀ THI MÔN: TOÁN – KHTN
Thời gian: 180 phút (không kể thời gian giao đề)
Đề thi gồm 01 trang
Câu I Cho hàm số: 1 4 2
y x (m 1)x 1 2m (1) 2
1 Khảo sát và vẽ đồ thị hàm số (1)
2 Tìm m để hàm số (1) chỉ có một cực trị
Câu II Giải các phương trình:
1
2 2
1 2 tan x 1
cos3x
2 − 1 tan x = 2
+
2 2
2
2 x 2 4 (x )
− + − = − +
Câu III
1 Giải hệ phương trình:
2 2
2
3log x x
log
y 4 log y log (xy) 3log x.log y
=
2 Trong khai triển nhị thức log x n
(x − 3) ( với x > 0; x≠ 1; n nguyên dương), tổng các hệ số của ba số hạng cuối bằng 22 Tìm x để số hạng ở chính giữa của khai triển có giá trị ≤ -540000
Câu V
1 Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm I(1; -1); M(2; 3); N(5; 0) Biết hình vuông ABCD nhận I làm tâm, M thuộc cạnh AB, N thuộc cạnh BC NK vuông góc với MP ( K thuộc AD; P đối xứng với M qua I) Xác định tọa độ điểm K
2 Cho hình trụ có hai đáy là hai hình tròn (O;R), (O’;R), chiều cao R 2. Hai điểm A,
B lần lượt thuộc (O), (O’) sao cho OA ⊥ O’B
a Chứng minh rằng: Tứ diện AOO’B có các mặt đều là các tam giác vuông Tính thể tích tứ diện AOO’B
b Mặt phẳng (α) ⊥ OO’, (α) cách O một khoảng x (0 < < x R 2)
Tính diện tích thiết diện do (α) cắt tứ diện OAO’B
Câu V
Cho a, b, c là các số dương thỏa mãn điều kiện abc = 1
Tìm GTLN của biểu thức :
P 3 31 3 3 31 3 3 31 3
2a b c 2 a 2b c 2 a b 2c 2
Hết
( Sưu tầm : Nguyễn Minh Hải – THPT Lê Xoay)
ĐỀ CHÍNH THỨC