1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (977)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,98 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biể[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 2 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B 0 < m < 2 C −2 ≤ m ≤ 2 D −2 < m < 2.

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 4 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

1

4;+∞)

Câu 5 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 6 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 7 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 1

2F(2x − 1)+ C B. R f(2x − 1)dx = F(2x − 1) + C

C.R f(2x − 1)dx= 2F(x) − 1 + C D.R f(2x − 1)dx = 2F(2x − 1) + C

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; −2) B I(0; −1; 2) C I(0; 1; 2) D I(1; 1; 2).

Câu 9 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 10 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 11 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 12 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

2.

Câu 13 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

Trang 2

A. 1

11

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (1; 2; 3) B (2; 4; 6) C (−2; −4; −6) D (−1; −2; −3).

Câu 15 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 16 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 17 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực dương.

Câu 18 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Không có số nào B Chỉ có số 1 C 0 và 1 D C.Truehỉ có số 0.

Câu 19 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 20 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 21 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là 3 và phần ảo là 2i B Phần thực là−3 và phần ảo là −2i.

C Phần thực là3 và phần ảo là 2 D Phần thực là −3 và phần ảo là−2.

Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 23 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z+ z = 2bi B |z2|= |z|2 C z − z= 2a D z · z= a2− b2

Câu 24 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 25 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

Câu 26 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là

A (x+ 2)2+ y2+ z2= 9 B (x − 2)2+ y2+ z2 = 9

C (x+ 2)2+ y2+ z2= 3 D (x − 2)2+ y2+ z2 = 3

Câu 27 ChoRa3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

1

2).

Câu 28 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x) = ex B F(x) = e2x C F(x)= ex+ 1 D F(x)= ex +1.

Câu 29 Tích phânR01e−x dx bằng

A. 1

1

e −1

e .

Trang 3

Câu 30 Biết 18 f(x)= −2; R4

1 f(x)= 3; R4

1 g(x)= 7 Mệnh đề nào sau đây sai?

A.R8

4 f(x)= −5

C.R4

1 [4 f (x) − 2g(x)]= −2

Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z + 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x − 2y+ z − 4 = 0 D 3x+ 2y + z − 4 = 0

Câu 32 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (−3; −1; 4) B (−3; −1; −4) C (3; 1; 4) D (3; −1; −4).

Câu 33 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)

A M(−2; 1; −8) B N(4; 2; 1) C Q(1; 2; −5) D P(3; 1; 3).

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 3

√ 6

√ 2

√ 5

√ 2

Câu 38 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 2 C |w|min = 3

2. D |w|min = 1

Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

Trang 4

A. 1

2;

9

9

4;

5

1

4 .

Câu 42 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

A a2+ b2+ c2+ ab + bc + ca B a2+ b2+ c2− ab − bc − ca

Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 44 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 32π

31π

33π

Câu 45 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 400π

3

125π√3

500π√3

250π√3

Câu 46 Tính đạo hàm của hàm số y= log4

x2− 1

A y′ = x

(x2− 1)log4e. B y

2(x2− 1) ln 4. C y

x2− 1 ln 4. D y

(x2− 1) ln 4.

Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(5

3;

11

3 ;

17

7

3;

10

3 ;

31

4

3;

10

3 ;

16

2

3;

7

3;

21

3 ).

Câu 49 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 50 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√2

5a√2

5a√3

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:43

w