1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề Luyện Thi Thpt Môn Toán (977).Pdf

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Luyện Thi Thpt Quốc Gia Môn Toán Năm Học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = x4 + 3x2 + 2 B y = x2 C y = √[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R?

C y= √x2+ x + 1 − √x2− x+ 1 D y= tan x

Câu 2 Công thức nào sai?

Câu 3 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (−1; 2) B m ∈ (0; 2) C −1 < m < 7

2. D m ≥ 0.

Câu 4 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3

Tìm F(π

4)

A F(π

4)= π

4 + ln 2

2 . B F(

π

4)= π

3 −

ln 2

2 . C F(

π

4)= π

4 −

ln 2

2 . D F(

π

4)= π

3 + ln 2

2 .

Câu 5 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a

Câu 6 Kết quả nào đúng?

A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −sin3x

C.R sin2xcos x= −cos2x sin x + C D.R sin2xcos x= sin3x

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 8 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A π

l2− R2

Câu 9 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√2.a2

√ 2.a2

π√3.a2

√ 3.a2

Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 11 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 12

m2− 12

4m2− 3

m2− 3

Trang 2

Câu 12 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R.

Câu 13 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (0;1

4;+∞)

Câu 14 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= 3 B f (−1)= −1 C f (−1)= −3 D f (−1)= −5

Câu 15 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 2x2+ 1 B y= x4+ 1 C y= −x4+ 1 D y= −x4+ 2x2+ 1

Câu 16 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

2

1

6.

Câu 17 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A loga(x − 2)2 = 2loga(x − 2) B logax2 = 2logax

2logax.

Câu 18 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường tròn B Đường hypebol C Đường elip D Đường parabol.

Câu 19 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là

một điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,

AN để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(20; 15; 7) B C(6; −17; 21) C C(6; 21; 21) D C(8;21

2 ; 19).

Câu 20 Kết quả nào đúng?

A.R sin2xcos x= −cos2x sin x + C B. R sin2xcos x= cos2x sin x + C

C.R sin2xcos x= sin3x

Câu 21 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp

là:

A VS ABC = a2

√ 3b2− a2

√ 3ab2

12 .

C VS ABC = a

2 q

b2− √3a2

√ 3a2b

12 .

Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc tơ pháp tuyến của (P) là

A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2).

Câu 23 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5= 0 Bán kính R của (S) bằng bao nhiêu?

Câu 24 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 25 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 26 Xác định tập tất cả các giá trị của tham số m để phương trình

2x3+ 3

2x

2− 3x − 1

2

=

m

2 − 1

có 4 nghiệm phân biệt

Trang 3

A S = (−2; −3

4) ∪ (

19

C S = (−5; −3

4) ∪ (

19

4) ∪ (

19

4 ; 6).

Câu 27 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục

bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 4a

2b

2a2b

4a2b

2a2b

3√2π.

Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:

Câu 29 Lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)

là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là

A. 3a

13

3a

√ 10

a

√ 3

3a

√ 13

26 .

Câu 30 Với giá trị nào của tham số m thì hàm số y = 2x − 3

x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1

4 :

Câu 31 Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng có dạng hình lăng trụ tứ

giác đều không nắp, có thể tích là 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng sao cho tổng S của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất, S bằng

A 75dm2 B 50√5dm2 C 125dm2 D 106, 25dm2

Câu 32 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường

y= 1

x, x= 1, x = 2 và trục hoành

A V = π

2.

Câu 33 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng

với lãi suất 3

A 48.621.980 đồng B 43.091.358 đồng C 45.188.656 đồng D 46.538667 đồng.

Câu 34 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 36 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Câu 37 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′ = 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

√ 3

√ 3

1

2.

Trang 4

Câu 38 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= −x4+ 2x2 C y= x3− 3x2

D y= −2x4+ 4x2

Câu 39 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 40 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 41 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

C.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R 2 (x2− 2x)dx

Câu 42 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R 5xdx=5x+ C B. R (2x+ 1)2dx = (2x+ 1)3

2 + C

Câu 44 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

D P= 2logae

Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 46 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 15

πa2√ 17

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1

Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 500π

3

125π√3

400π√3

250π√3

Câu 49 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Trang 5

Câu 50 Tính đạo hàm của hàm số y= 5x +cos3x

A y′= (1 − 3 sin 3x)5x +cos3xln 5. B y′ = (1 − sin 3x)5x +cos3xln 5.

C y′= 5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5.

HẾT

Ngày đăng: 04/04/2023, 11:32