Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞;−2] và[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4;+∞)
B [22;+∞) C [7
4; 2]S[22;+∞) D (7
4; 2]S[22;+∞)
Câu 2 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
√ 3
√ 3
Câu 3 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′
; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
2.
Câu 4 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a
√ 15
a
√ 5
√ 15
Câu 5 Tính nguyên hàmR cos 3xdx
A −3 sin 3x+ C B −1
3sin 3x+ C
Câu 6 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab)= ln a ln b B ln(ab2)= ln a + 2 ln b
C ln(a
b)= ln a
2)= ln a + (ln b)2
Câu 7 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 2x2+ 1 D y= −x4+ 1
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(1; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(0; 1; 2).
Câu 9 Phần ảo của số phức z= 2 − 3i là
Câu 10 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 11 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −1
3.
Câu 12 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
2
2√3
√ 3
√ 2a
Trang 2Câu 13 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 14 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
C.R f(x)= sinx + x2
2 + C
Câu 15 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
2 a
√ 2
4 a
√ 2
6 a
Câu 16 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16π
16
16
15.
Câu 17 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009 B (1+ i)2018 = 21009i C (1+ i)2018 = −21009 D (1+ i)2018 = −21009i
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 20 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 21 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực không âm.
Câu 22 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 23 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 24 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 1 hoặc m ≤ 0 C −1 ≤ m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 Giá trị củaR0
−1ex +1dxbằng
Câu 27 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A P(3; 1; 3) B Q(1; 2; −5) C M(−2; 1; −8) D N(4; 2; 1).
Trang 3Câu 28 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (−3; −1; −4) B (3; −1; −4) C (3; 1; 4) D (−3; −1; 4).
Câu 29 ChoRa3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2).
Câu 30 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F(x)= f′
(x)+ C B F(x)= f′
(x) C F′(x)= f (x) D F′(x)+ C = f (x)
Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 3 B (x − 2)2+ y2+ z2 = 3
C (x − 2)2+ y2+ z2 = 9 D (x+ 2)2+ y2+ z2 = 9
Câu 32 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x)= ex B F(x)= e2x C F(x) = ex +1. D F(x)= ex+ 1
Câu 33 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x)= −1
2cos2x. B F(x)= sin2x C F(x) = −cos2x D F(x)= −cos2x
Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 35 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
1
2 < |z| < 3
3
2 < |z| < 2 D. 5
2 < |z| < 7
2.
Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2.
Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. √1
√
√ 2
2 .
Câu 38 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 39 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 40 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B z là một số thực không dương.
Câu 41 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Trang 4Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
4;
5
4
!
2;
9 4
!
4
!
4;+∞
!
Câu 43 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A −2x − y+ 4z − 8 = 0 B 2x+ y − 4z + 1 = 0
C 2x+ y − 4z + 5 = 0 D 2x+ y − 4z + 7 = 0
Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 47 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình vô nghiệm.
C Bất phương trình đúng với mọi x ∈ [ 1; 3].
D Bất phương trình đúng với mọi x ∈ (4;+∞)
Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√30
a√15
3a√6
Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 hoặc m < −1
3 B m > 1. C m > 2 hoặc m < −1 D m < −2.
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Trang 5HẾT