Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 2 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(3; 7; 4) B C(1; 5; 3) C C(5; 9; 5) D C(−3; 1; 1).
Câu 4 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 2x2+ 1 B y = x4+ 2x2+ 1 C y= −x4+ 1 D y= x4+ 1
Câu 5 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Không có tiệm cận ngang và có một tiệm cận đứng.
C Không có tiệm cận.
D Có một tiệm cận ngang và một tiệm cận đứng .
Câu 6 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 7 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(a
b)= ln a
2)= ln a + 2 ln b
C ln(ab2)= ln a + (ln b)2 D ln(ab)= ln a ln b
Câu 8 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A −1
2
1
6.
Câu 9 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 5
1
4
1
4.
Câu 10 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 1
1
7
2.
Câu 11 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
2 + C
Câu 12 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Trang 2Câu 13 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 2
x.
Câu 14 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= 2
3.
Câu 15 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 16 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 17 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 18 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z+ z = 2bi C z − z= 2a D z · z= a2− b2
Câu 19 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 21 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 22 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 23 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 24 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 26 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A M(−2; 1; −8) B N(4; 2; 1) C Q(1; 2; −5) D P(3; 1; 3).
Câu 27 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x) = ex+ 1 B F(x) = ex C F(x)= ex +1. D F(x)= e2x
Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 3; −1) B (3; 1; 1) C (1; 1; 3) D (−1; −1; −3).
Trang 3Câu 29 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 30 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x+ y − z + 1 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x − y + z + 6 = 0.
Câu 31 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= −2023cos(2023x) B f (x)= 2023cos(2023x)
C f (x)= − 1
Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng
tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là
A 3x − 2y+ z − 12 = 0 B 3x+ 2y + z − 4 = 0
C 3x − 2y+ z − 4 = 0 D 3x − 2y+ z + 4 = 0
Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4).
Câu 34 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
4;
5 4
!
2;
9 4
!
Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 38 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 5
√ 2
√ 6
2 .
Câu 40 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B 2 < |z| < 5
1
2 < |z| < 3
5
2 < |z| < 7
2.
Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
2.
Trang 4Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 43 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRh + πR2 B St p = πRl + πR2 C St p = πRl + 2πR2 D St p = 2πRl + 2πR2
Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√6
3a√30
a√15
Câu 45 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A ln 2+ 6π
1
4ln 2+ 3π
6π
1
5ln 2+ 6π
5 .
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a > 0 thì ax = ay ⇔ x= y
Câu 49 Tính đạo hàm của hàm số y= log4
√
x2− 1
A y′ = x
2(x2− 1) ln 4. B y
(x2− 1)log4e. C y
x2− 1 ln 4. D y
(x2− 1) ln 4.
Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Trang 5HẾT